{"title":"西部边界流的再循环与海盆的纵横比呈非线性变化","authors":"Kaushal Gianchandani","doi":"10.1063/5.0226883","DOIUrl":null,"url":null,"abstract":"Recirculation gyres adjacent to western boundary currents (WBCs) in the ocean enhance the poleward transport of these currents. While it is well-established that the WBC in a barotropic ocean strengthens with increase in basin's aspect ratio (the meridional-to-zonal extent ratio), how intensity of the recirculation through the western boundary layer varies with this parameter remains unexplored. I address this using the non-dimensional form of the nonlinear, wind-driven Stommel–Munk model of westward intensification that comprises three parameters—the aspect ratio (δ), the damping coefficient (ϵ), and the β-Rossby number (Rβ). Here, ϵ is set by the ratio of Rayleigh friction coefficient (or eddy viscosity) to the meridional gradient of the Coriolis frequency and the basin's zonal dimension, while Rβ is proportional to wind stress amplitude and quantifies the strength of nonlinearity. In the weak-to-moderate nonlinearity limit (Rβ<∼ϵ), perturbation analysis reveals that recirculation varies concavely with aspect ratio, suggesting existence of an optimal aspect ratio (δopt) for which the recirculation is maximum and for typical values of ϵ (10−3−10−2), δopt follows the power-law relation δopt=4.3ϵ. Numerical simulations further validate the existence of δopt. For large ϵ (>5×10−3), the power-law predicts δopt for the numerical solutions rather accurately, but does not hold for smaller ϵ (2×10−3) due to increased importance of nonlinear terms. Nevertheless, the nonlinear variation in recirculation through the western boundary layer with aspect ratio is observed for all ϵ values and may contribute to the heterogeneous increase in the WBC's transport across different ocean basins in a warming climate.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"23 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recirculation through western boundary currents varies nonlinearly with the ocean basin's aspect ratio\",\"authors\":\"Kaushal Gianchandani\",\"doi\":\"10.1063/5.0226883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recirculation gyres adjacent to western boundary currents (WBCs) in the ocean enhance the poleward transport of these currents. While it is well-established that the WBC in a barotropic ocean strengthens with increase in basin's aspect ratio (the meridional-to-zonal extent ratio), how intensity of the recirculation through the western boundary layer varies with this parameter remains unexplored. I address this using the non-dimensional form of the nonlinear, wind-driven Stommel–Munk model of westward intensification that comprises three parameters—the aspect ratio (δ), the damping coefficient (ϵ), and the β-Rossby number (Rβ). Here, ϵ is set by the ratio of Rayleigh friction coefficient (or eddy viscosity) to the meridional gradient of the Coriolis frequency and the basin's zonal dimension, while Rβ is proportional to wind stress amplitude and quantifies the strength of nonlinearity. In the weak-to-moderate nonlinearity limit (Rβ<∼ϵ), perturbation analysis reveals that recirculation varies concavely with aspect ratio, suggesting existence of an optimal aspect ratio (δopt) for which the recirculation is maximum and for typical values of ϵ (10−3−10−2), δopt follows the power-law relation δopt=4.3ϵ. Numerical simulations further validate the existence of δopt. For large ϵ (>5×10−3), the power-law predicts δopt for the numerical solutions rather accurately, but does not hold for smaller ϵ (2×10−3) due to increased importance of nonlinear terms. Nevertheless, the nonlinear variation in recirculation through the western boundary layer with aspect ratio is observed for all ϵ values and may contribute to the heterogeneous increase in the WBC's transport across different ocean basins in a warming climate.\",\"PeriodicalId\":20066,\"journal\":{\"name\":\"Physics of Fluids\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0226883\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0226883","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Recirculation through western boundary currents varies nonlinearly with the ocean basin's aspect ratio
Recirculation gyres adjacent to western boundary currents (WBCs) in the ocean enhance the poleward transport of these currents. While it is well-established that the WBC in a barotropic ocean strengthens with increase in basin's aspect ratio (the meridional-to-zonal extent ratio), how intensity of the recirculation through the western boundary layer varies with this parameter remains unexplored. I address this using the non-dimensional form of the nonlinear, wind-driven Stommel–Munk model of westward intensification that comprises three parameters—the aspect ratio (δ), the damping coefficient (ϵ), and the β-Rossby number (Rβ). Here, ϵ is set by the ratio of Rayleigh friction coefficient (or eddy viscosity) to the meridional gradient of the Coriolis frequency and the basin's zonal dimension, while Rβ is proportional to wind stress amplitude and quantifies the strength of nonlinearity. In the weak-to-moderate nonlinearity limit (Rβ<∼ϵ), perturbation analysis reveals that recirculation varies concavely with aspect ratio, suggesting existence of an optimal aspect ratio (δopt) for which the recirculation is maximum and for typical values of ϵ (10−3−10−2), δopt follows the power-law relation δopt=4.3ϵ. Numerical simulations further validate the existence of δopt. For large ϵ (>5×10−3), the power-law predicts δopt for the numerical solutions rather accurately, but does not hold for smaller ϵ (2×10−3) due to increased importance of nonlinear terms. Nevertheless, the nonlinear variation in recirculation through the western boundary layer with aspect ratio is observed for all ϵ values and may contribute to the heterogeneous increase in the WBC's transport across different ocean basins in a warming climate.
期刊介绍:
Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to:
-Acoustics
-Aerospace and aeronautical flow
-Astrophysical flow
-Biofluid mechanics
-Cavitation and cavitating flows
-Combustion flows
-Complex fluids
-Compressible flow
-Computational fluid dynamics
-Contact lines
-Continuum mechanics
-Convection
-Cryogenic flow
-Droplets
-Electrical and magnetic effects in fluid flow
-Foam, bubble, and film mechanics
-Flow control
-Flow instability and transition
-Flow orientation and anisotropy
-Flows with other transport phenomena
-Flows with complex boundary conditions
-Flow visualization
-Fluid mechanics
-Fluid physical properties
-Fluid–structure interactions
-Free surface flows
-Geophysical flow
-Interfacial flow
-Knudsen flow
-Laminar flow
-Liquid crystals
-Mathematics of fluids
-Micro- and nanofluid mechanics
-Mixing
-Molecular theory
-Nanofluidics
-Particulate, multiphase, and granular flow
-Processing flows
-Relativistic fluid mechanics
-Rotating flows
-Shock wave phenomena
-Soft matter
-Stratified flows
-Supercritical fluids
-Superfluidity
-Thermodynamics of flow systems
-Transonic flow
-Turbulent flow
-Viscous and non-Newtonian flow
-Viscoelasticity
-Vortex dynamics
-Waves