{"title":"多孔介质中嵌入粘弹性沃尔特斯液体 B 的磁边界层流动的流体力学稳定性","authors":"H. Amrutha, Shashi Prabha Gogate S.","doi":"10.1063/5.0222210","DOIUrl":null,"url":null,"abstract":"The present study investigates the linear stability of stagnation boundary layer flow of viscoelastic Walters' liquid B in the presence of magnetic field and porous medium by solving modified Orr–Sommerfeld equation numerically using the Chebyshev collocation method. The model is characterized mainly by the elasticity number (E), the magnetic number (Q), and the permeability parameter (K) in addition to the Reynolds number(Re). The Prandtl boundary layer equations derived for the present model are converted through appropriate similarity transformations, to an ordinary differential equation whose solution describes the velocity, which has oscillatory behavior. The solution of generalized eigenvalue problem governing the stability of the boundary layer has an interesting eigenspectrum. The spectra for different values of E, K, and Q are shown to be a continuation of Newtonian eigenspectrum with the instability belongs to viscoelastic wall mode for certain range of parameters. It is shown that the role of elasticity number is to destabilize the viscoelastic boundary layer flow, whereas both magnetic field and porous medium have the stabilizing effect on the flow. These interesting features are further confirmed by performing the energy budget analysis on the perturbed quantities. Region of negative production due to the Reynolds stress as well as production due to viscous dissipation and viscoelastic contributions in the positive region, and there is reduction in the growth rate of kinetic energy that causes stability. Other physical mechanisms related to flow stability are discussed in detail.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"1 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrodynamic stability of magnetic boundary layer flow of viscoelastic Walters' liquid B embedded in a porous medium\",\"authors\":\"H. Amrutha, Shashi Prabha Gogate S.\",\"doi\":\"10.1063/5.0222210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study investigates the linear stability of stagnation boundary layer flow of viscoelastic Walters' liquid B in the presence of magnetic field and porous medium by solving modified Orr–Sommerfeld equation numerically using the Chebyshev collocation method. The model is characterized mainly by the elasticity number (E), the magnetic number (Q), and the permeability parameter (K) in addition to the Reynolds number(Re). The Prandtl boundary layer equations derived for the present model are converted through appropriate similarity transformations, to an ordinary differential equation whose solution describes the velocity, which has oscillatory behavior. The solution of generalized eigenvalue problem governing the stability of the boundary layer has an interesting eigenspectrum. The spectra for different values of E, K, and Q are shown to be a continuation of Newtonian eigenspectrum with the instability belongs to viscoelastic wall mode for certain range of parameters. It is shown that the role of elasticity number is to destabilize the viscoelastic boundary layer flow, whereas both magnetic field and porous medium have the stabilizing effect on the flow. These interesting features are further confirmed by performing the energy budget analysis on the perturbed quantities. Region of negative production due to the Reynolds stress as well as production due to viscous dissipation and viscoelastic contributions in the positive region, and there is reduction in the growth rate of kinetic energy that causes stability. Other physical mechanisms related to flow stability are discussed in detail.\",\"PeriodicalId\":20066,\"journal\":{\"name\":\"Physics of Fluids\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0222210\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0222210","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Hydrodynamic stability of magnetic boundary layer flow of viscoelastic Walters' liquid B embedded in a porous medium
The present study investigates the linear stability of stagnation boundary layer flow of viscoelastic Walters' liquid B in the presence of magnetic field and porous medium by solving modified Orr–Sommerfeld equation numerically using the Chebyshev collocation method. The model is characterized mainly by the elasticity number (E), the magnetic number (Q), and the permeability parameter (K) in addition to the Reynolds number(Re). The Prandtl boundary layer equations derived for the present model are converted through appropriate similarity transformations, to an ordinary differential equation whose solution describes the velocity, which has oscillatory behavior. The solution of generalized eigenvalue problem governing the stability of the boundary layer has an interesting eigenspectrum. The spectra for different values of E, K, and Q are shown to be a continuation of Newtonian eigenspectrum with the instability belongs to viscoelastic wall mode for certain range of parameters. It is shown that the role of elasticity number is to destabilize the viscoelastic boundary layer flow, whereas both magnetic field and porous medium have the stabilizing effect on the flow. These interesting features are further confirmed by performing the energy budget analysis on the perturbed quantities. Region of negative production due to the Reynolds stress as well as production due to viscous dissipation and viscoelastic contributions in the positive region, and there is reduction in the growth rate of kinetic energy that causes stability. Other physical mechanisms related to flow stability are discussed in detail.
期刊介绍:
Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to:
-Acoustics
-Aerospace and aeronautical flow
-Astrophysical flow
-Biofluid mechanics
-Cavitation and cavitating flows
-Combustion flows
-Complex fluids
-Compressible flow
-Computational fluid dynamics
-Contact lines
-Continuum mechanics
-Convection
-Cryogenic flow
-Droplets
-Electrical and magnetic effects in fluid flow
-Foam, bubble, and film mechanics
-Flow control
-Flow instability and transition
-Flow orientation and anisotropy
-Flows with other transport phenomena
-Flows with complex boundary conditions
-Flow visualization
-Fluid mechanics
-Fluid physical properties
-Fluid–structure interactions
-Free surface flows
-Geophysical flow
-Interfacial flow
-Knudsen flow
-Laminar flow
-Liquid crystals
-Mathematics of fluids
-Micro- and nanofluid mechanics
-Mixing
-Molecular theory
-Nanofluidics
-Particulate, multiphase, and granular flow
-Processing flows
-Relativistic fluid mechanics
-Rotating flows
-Shock wave phenomena
-Soft matter
-Stratified flows
-Supercritical fluids
-Superfluidity
-Thermodynamics of flow systems
-Transonic flow
-Turbulent flow
-Viscous and non-Newtonian flow
-Viscoelasticity
-Vortex dynamics
-Waves