Wen Sun, Minghua Bai, Ji Wang, Bei Wang, Yixing Liu, Qi Wang, Dongran Han
{"title":"机器学习辅助快速确定中药配方","authors":"Wen Sun, Minghua Bai, Ji Wang, Bei Wang, Yixing Liu, Qi Wang, Dongran Han","doi":"10.1186/s13020-024-00992-0","DOIUrl":null,"url":null,"abstract":"The aim of this study was to develop a machine learning-assisted rapid determination methodology for traditional Chinese Medicine Constitution. Based on the Constitution in Chinese Medicine Questionnaire (CCMQ), the most applied diagnostic instrument for assessing individuals’ constitutions, we employed automated supervised machine learning algorithms (i.e., Tree-based Pipeline Optimization Tool; TPOT) on all the possible item combinations for each subscale and an unsupervised machine learning algorithm (i.e., variable clustering; varclus) on the whole scale to select items that can best predict body constitution (BC) classifications or BC scores. By utilizing subsets of items selected based on TPOT and corresponding machine learning algorithms, the accuracies of BC classifications prediction ranged from 0.819 to 0.936, with the root mean square errors of BC scores prediction stabilizing between 6.241 and 9.877. Overall, the results suggested that the automated machine learning algorithms performed better than the varclus algorithm for item selection. Additionally, based on an automated machine learning item selection procedure, we provided the top three ranked item combinations with each possible subscale length, along with their corresponding algorithms for predicting BC classification and severity. This approach could accommodate the needs of different practitioners in traditional Chinese medicine for rapid constitution determination.","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"33 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-assisted rapid determination for traditional Chinese Medicine Constitution\",\"authors\":\"Wen Sun, Minghua Bai, Ji Wang, Bei Wang, Yixing Liu, Qi Wang, Dongran Han\",\"doi\":\"10.1186/s13020-024-00992-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this study was to develop a machine learning-assisted rapid determination methodology for traditional Chinese Medicine Constitution. Based on the Constitution in Chinese Medicine Questionnaire (CCMQ), the most applied diagnostic instrument for assessing individuals’ constitutions, we employed automated supervised machine learning algorithms (i.e., Tree-based Pipeline Optimization Tool; TPOT) on all the possible item combinations for each subscale and an unsupervised machine learning algorithm (i.e., variable clustering; varclus) on the whole scale to select items that can best predict body constitution (BC) classifications or BC scores. By utilizing subsets of items selected based on TPOT and corresponding machine learning algorithms, the accuracies of BC classifications prediction ranged from 0.819 to 0.936, with the root mean square errors of BC scores prediction stabilizing between 6.241 and 9.877. Overall, the results suggested that the automated machine learning algorithms performed better than the varclus algorithm for item selection. Additionally, based on an automated machine learning item selection procedure, we provided the top three ranked item combinations with each possible subscale length, along with their corresponding algorithms for predicting BC classification and severity. This approach could accommodate the needs of different practitioners in traditional Chinese medicine for rapid constitution determination.\",\"PeriodicalId\":10266,\"journal\":{\"name\":\"Chinese Medicine\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13020-024-00992-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INTEGRATIVE & COMPLEMENTARY MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13020-024-00992-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
Machine learning-assisted rapid determination for traditional Chinese Medicine Constitution
The aim of this study was to develop a machine learning-assisted rapid determination methodology for traditional Chinese Medicine Constitution. Based on the Constitution in Chinese Medicine Questionnaire (CCMQ), the most applied diagnostic instrument for assessing individuals’ constitutions, we employed automated supervised machine learning algorithms (i.e., Tree-based Pipeline Optimization Tool; TPOT) on all the possible item combinations for each subscale and an unsupervised machine learning algorithm (i.e., variable clustering; varclus) on the whole scale to select items that can best predict body constitution (BC) classifications or BC scores. By utilizing subsets of items selected based on TPOT and corresponding machine learning algorithms, the accuracies of BC classifications prediction ranged from 0.819 to 0.936, with the root mean square errors of BC scores prediction stabilizing between 6.241 and 9.877. Overall, the results suggested that the automated machine learning algorithms performed better than the varclus algorithm for item selection. Additionally, based on an automated machine learning item selection procedure, we provided the top three ranked item combinations with each possible subscale length, along with their corresponding algorithms for predicting BC classification and severity. This approach could accommodate the needs of different practitioners in traditional Chinese medicine for rapid constitution determination.
Chinese MedicineINTEGRATIVE & COMPLEMENTARY MEDICINE-PHARMACOLOGY & PHARMACY
CiteScore
7.90
自引率
4.10%
发文量
133
审稿时长
31 weeks
期刊介绍:
Chinese Medicine is an open access, online journal publishing evidence-based, scientifically justified, and ethical research into all aspects of Chinese medicine.
Areas of interest include recent advances in herbal medicine, clinical nutrition, clinical diagnosis, acupuncture, pharmaceutics, biomedical sciences, epidemiology, education, informatics, sociology, and psychology that are relevant and significant to Chinese medicine. Examples of research approaches include biomedical experimentation, high-throughput technology, clinical trials, systematic reviews, meta-analysis, sampled surveys, simulation, data curation, statistics, omics, translational medicine, and integrative methodologies.
Chinese Medicine is a credible channel to communicate unbiased scientific data, information, and knowledge in Chinese medicine among researchers, clinicians, academics, and students in Chinese medicine and other scientific disciplines of medicine.