通过 McKean-Vlasov 动力学向前传播低差异:从 QMC 到 MLQMC

Nadhir Ben Rached, Abdul-Lateef Haji-Ali, Raúl Tempone, Leon Wilkosz
{"title":"通过 McKean-Vlasov 动力学向前传播低差异:从 QMC 到 MLQMC","authors":"Nadhir Ben Rached, Abdul-Lateef Haji-Ali, Raúl Tempone, Leon Wilkosz","doi":"arxiv-2409.09821","DOIUrl":null,"url":null,"abstract":"This work develops a particle system addressing the approximation of\nMcKean-Vlasov stochastic differential equations (SDEs). The novelty of the\napproach lies in involving low discrepancy sequences nontrivially in the\nconstruction of a particle system with coupled noise and initial conditions.\nWeak convergence for SDEs with additive noise is proven. A numerical study\ndemonstrates that the novel approach presented here doubles the respective\nconvergence rates for weak and strong approximation of the mean-field limit,\ncompared with the standard particle system. These rates are proven in the\nsimplified setting of a mean-field ordinary differential equation in terms of\nappropriate bounds involving the star discrepancy for low discrepancy sequences\nwith a group structure, such as Rank-1 lattice points. This construction\nnontrivially provides an antithetic multilevel quasi-Monte Carlo estimator. An\nasymptotic error analysis reveals that the proposed approach outperforms\nmethods based on the classic particle system with independent initial\nconditions and noise.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forward Propagation of Low Discrepancy Through McKean-Vlasov Dynamics: From QMC to MLQMC\",\"authors\":\"Nadhir Ben Rached, Abdul-Lateef Haji-Ali, Raúl Tempone, Leon Wilkosz\",\"doi\":\"arxiv-2409.09821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work develops a particle system addressing the approximation of\\nMcKean-Vlasov stochastic differential equations (SDEs). The novelty of the\\napproach lies in involving low discrepancy sequences nontrivially in the\\nconstruction of a particle system with coupled noise and initial conditions.\\nWeak convergence for SDEs with additive noise is proven. A numerical study\\ndemonstrates that the novel approach presented here doubles the respective\\nconvergence rates for weak and strong approximation of the mean-field limit,\\ncompared with the standard particle system. These rates are proven in the\\nsimplified setting of a mean-field ordinary differential equation in terms of\\nappropriate bounds involving the star discrepancy for low discrepancy sequences\\nwith a group structure, such as Rank-1 lattice points. This construction\\nnontrivially provides an antithetic multilevel quasi-Monte Carlo estimator. An\\nasymptotic error analysis reveals that the proposed approach outperforms\\nmethods based on the classic particle system with independent initial\\nconditions and noise.\",\"PeriodicalId\":501162,\"journal\":{\"name\":\"arXiv - MATH - Numerical Analysis\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究开发了一种粒子系统,用于近似麦金-弗拉索夫随机微分方程(SDE)。该方法的新颖之处在于,在构建具有耦合噪声和初始条件的粒子系统时,非难涉及低差异序列。数值研究证明,与标准粒子系统相比,本文提出的新方法使平均场极限的弱逼近和强逼近的收敛率分别提高了一倍。这些收敛率在均场常微分方程的简化设置中得到了证明,即对于具有群结构(如 Rank-1 格点)的低差异序列,涉及星差异的适当边界。这一结构提供了一个反向多层次准蒙特卡罗估计器。渐近误差分析表明,所提出的方法优于基于具有独立初始条件和噪声的经典粒子系统的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forward Propagation of Low Discrepancy Through McKean-Vlasov Dynamics: From QMC to MLQMC
This work develops a particle system addressing the approximation of McKean-Vlasov stochastic differential equations (SDEs). The novelty of the approach lies in involving low discrepancy sequences nontrivially in the construction of a particle system with coupled noise and initial conditions. Weak convergence for SDEs with additive noise is proven. A numerical study demonstrates that the novel approach presented here doubles the respective convergence rates for weak and strong approximation of the mean-field limit, compared with the standard particle system. These rates are proven in the simplified setting of a mean-field ordinary differential equation in terms of appropriate bounds involving the star discrepancy for low discrepancy sequences with a group structure, such as Rank-1 lattice points. This construction nontrivially provides an antithetic multilevel quasi-Monte Carlo estimator. An asymptotic error analysis reveals that the proposed approach outperforms methods based on the classic particle system with independent initial conditions and noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Lightweight, Geometrically Flexible Fast Algorithm for the Evaluation of Layer and Volume Potentials Adaptive Time-Step Semi-Implicit One-Step Taylor Scheme for Stiff Ordinary Differential Equations Conditions aux limites fortement non lin{é}aires pour les {é}quations d'Euler de la dynamique des gaz Fully guaranteed and computable error bounds on the energy for periodic Kohn-Sham equations with convex density functionals A novel Mortar Method Integration using Radial Basis Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1