非结构化三角形网格上的稳健 DG 方案:通过最优凸分解消除振荡和保持边界

Shengrong Ding, Shumo Cui, Kailiang Wu
{"title":"非结构化三角形网格上的稳健 DG 方案:通过最优凸分解消除振荡和保持边界","authors":"Shengrong Ding, Shumo Cui, Kailiang Wu","doi":"arxiv-2409.09620","DOIUrl":null,"url":null,"abstract":"Discontinuous Galerkin (DG) schemes on unstructured meshes offer the\nadvantages of compactness and the ability to handle complex computational\ndomains. However, their robustness and reliability in solving hyperbolic\nconservation laws depend on two critical abilities: suppressing spurious\noscillations and preserving intrinsic bounds or constraints. This paper\nintroduces two significant advancements in enhancing the robustness and\nefficiency of DG methods on unstructured meshes for general hyperbolic\nconservation laws, while maintaining their accuracy and compactness. First, we\ninvestigate the oscillation-eliminating (OE) DG methods on unstructured meshes.\nThese methods not only maintain key features such as conservation, scale\ninvariance, and evolution invariance but also achieve rotation invariance\nthrough a novel rotation-invariant OE (RIOE) procedure. Second, we propose, for\nthe first time, the optimal convex decomposition for designing efficient\nbound-preserving (BP) DG schemes on unstructured meshes. Finding the optimal\nconvex decomposition that maximizes the BP CFL number is an important yet\nchallenging problem.While this challenge was addressed for rectangular meshes,\nit remains an open problem for triangular meshes. This paper successfully\nconstructs the optimal convex decomposition for the widely used $P^1$ and $P^2$\nspaces on triangular cells, significantly improving the efficiency of BP DG\nmethods.The maximum BP CFL numbers are increased by 100%--200% for $P^1$ and\n280.38%--350% for $P^2$, compared to classic decomposition. Furthermore, our\nRIOE procedure and optimal decomposition technique can be integrated into\nexisting DG codes with little and localized modifications. These techniques\nrequire only edge-neighboring cell information, thereby retaining the\ncompactness and high parallel efficiency of original DG methods.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust DG Schemes on Unstructured Triangular Meshes: Oscillation Elimination and Bound Preservation via Optimal Convex Decomposition\",\"authors\":\"Shengrong Ding, Shumo Cui, Kailiang Wu\",\"doi\":\"arxiv-2409.09620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discontinuous Galerkin (DG) schemes on unstructured meshes offer the\\nadvantages of compactness and the ability to handle complex computational\\ndomains. However, their robustness and reliability in solving hyperbolic\\nconservation laws depend on two critical abilities: suppressing spurious\\noscillations and preserving intrinsic bounds or constraints. This paper\\nintroduces two significant advancements in enhancing the robustness and\\nefficiency of DG methods on unstructured meshes for general hyperbolic\\nconservation laws, while maintaining their accuracy and compactness. First, we\\ninvestigate the oscillation-eliminating (OE) DG methods on unstructured meshes.\\nThese methods not only maintain key features such as conservation, scale\\ninvariance, and evolution invariance but also achieve rotation invariance\\nthrough a novel rotation-invariant OE (RIOE) procedure. Second, we propose, for\\nthe first time, the optimal convex decomposition for designing efficient\\nbound-preserving (BP) DG schemes on unstructured meshes. Finding the optimal\\nconvex decomposition that maximizes the BP CFL number is an important yet\\nchallenging problem.While this challenge was addressed for rectangular meshes,\\nit remains an open problem for triangular meshes. This paper successfully\\nconstructs the optimal convex decomposition for the widely used $P^1$ and $P^2$\\nspaces on triangular cells, significantly improving the efficiency of BP DG\\nmethods.The maximum BP CFL numbers are increased by 100%--200% for $P^1$ and\\n280.38%--350% for $P^2$, compared to classic decomposition. Furthermore, our\\nRIOE procedure and optimal decomposition technique can be integrated into\\nexisting DG codes with little and localized modifications. These techniques\\nrequire only edge-neighboring cell information, thereby retaining the\\ncompactness and high parallel efficiency of original DG methods.\",\"PeriodicalId\":501162,\"journal\":{\"name\":\"arXiv - MATH - Numerical Analysis\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

非结构网格上的非连续伽勒金(DG)方案具有结构紧凑和能够处理复杂计算域的优点。然而,它们在求解双曲守恒定律时的鲁棒性和可靠性取决于两个关键能力:抑制虚假振荡和保留固有边界或约束。本文介绍了在非结构网格上增强 DG 方法对一般双曲守恒定律的鲁棒性和效率的两个重要进展,同时保持了它们的精度和紧凑性。首先,我们研究了非结构网格上的振荡消除(OE)DG 方法。这些方法不仅保持了守恒性、尺度不变性和演化不变性等关键特征,还通过新颖的旋转不变 OE(RIOE)过程实现了旋转不变性。其次,我们首次提出了在非结构网格上设计高效保界(BP)DG 方案的最优凸分解。寻找能使 BP CFL 数最大化的最优凸分解是一个重要而又具有挑战性的问题。本文成功地为三角形单元上广泛使用的 $P^1$ 和 $P^2$ 空间构建了最优凸分解,显著提高了 BP DG 方法的效率。与经典分解相比,$P^1$ 的最大 BP CFL 数提高了 100%-200%,$P^2$ 的最大 BP CFL 数提高了 280.38%-350%。此外,我们的 RIOE 程序和最优分解技术可以集成到现有的 DG 代码中,只需进行少量的局部修改。这些技术只需要边缘相邻单元的信息,因此保留了原始 DG 方法的紧凑性和高并行效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust DG Schemes on Unstructured Triangular Meshes: Oscillation Elimination and Bound Preservation via Optimal Convex Decomposition
Discontinuous Galerkin (DG) schemes on unstructured meshes offer the advantages of compactness and the ability to handle complex computational domains. However, their robustness and reliability in solving hyperbolic conservation laws depend on two critical abilities: suppressing spurious oscillations and preserving intrinsic bounds or constraints. This paper introduces two significant advancements in enhancing the robustness and efficiency of DG methods on unstructured meshes for general hyperbolic conservation laws, while maintaining their accuracy and compactness. First, we investigate the oscillation-eliminating (OE) DG methods on unstructured meshes. These methods not only maintain key features such as conservation, scale invariance, and evolution invariance but also achieve rotation invariance through a novel rotation-invariant OE (RIOE) procedure. Second, we propose, for the first time, the optimal convex decomposition for designing efficient bound-preserving (BP) DG schemes on unstructured meshes. Finding the optimal convex decomposition that maximizes the BP CFL number is an important yet challenging problem.While this challenge was addressed for rectangular meshes, it remains an open problem for triangular meshes. This paper successfully constructs the optimal convex decomposition for the widely used $P^1$ and $P^2$ spaces on triangular cells, significantly improving the efficiency of BP DG methods.The maximum BP CFL numbers are increased by 100%--200% for $P^1$ and 280.38%--350% for $P^2$, compared to classic decomposition. Furthermore, our RIOE procedure and optimal decomposition technique can be integrated into existing DG codes with little and localized modifications. These techniques require only edge-neighboring cell information, thereby retaining the compactness and high parallel efficiency of original DG methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Lightweight, Geometrically Flexible Fast Algorithm for the Evaluation of Layer and Volume Potentials Adaptive Time-Step Semi-Implicit One-Step Taylor Scheme for Stiff Ordinary Differential Equations Conditions aux limites fortement non lin{é}aires pour les {é}quations d'Euler de la dynamique des gaz Fully guaranteed and computable error bounds on the energy for periodic Kohn-Sham equations with convex density functionals A novel Mortar Method Integration using Radial Basis Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1