布芪黄芩汤通过肠脑轴驱动肠道微生物群衍生的吲哚乳酸减轻缺血性中风

IF 5.3 3区 医学 Q1 INTEGRATIVE & COMPLEMENTARY MEDICINE Chinese Medicine Pub Date : 2024-09-15 DOI:10.1186/s13020-024-00991-1
Yarui Liu, Peng Zhao, Zheng Cai, Peishi He, Jiahan Wang, Haoqing He, Zhibo Zhu, Xiaowen Guo, Ke Ma, Kang Peng, Jie Zhao
{"title":"布芪黄芩汤通过肠脑轴驱动肠道微生物群衍生的吲哚乳酸减轻缺血性中风","authors":"Yarui Liu, Peng Zhao, Zheng Cai, Peishi He, Jiahan Wang, Haoqing He, Zhibo Zhu, Xiaowen Guo, Ke Ma, Kang Peng, Jie Zhao","doi":"10.1186/s13020-024-00991-1","DOIUrl":null,"url":null,"abstract":"Ischemic stroke belongs to “apoplexy” and its pathogenesis is characterized by qi deficiency and blood stasis combining with phlegm-damp clouding orifices. Buqi-Huoxue-Tongnao decoction (BHTD) is a traditional Chinese medicine formula for qi deficiency, blood stasis and phlegm obstruction syndrome. However, its efficacy and potential mechanism on ischemic stroke are still unclear. This study aims to investigate the protective effect and potential mechanism of BHTD against ischemic stroke. Middle cerebral artery occlusion (MCAO) surgery was carried out to establish an ischemic stroke model in rats. Subsequently, the rats were gavaged with different doses of BHTD (2.59, 5.175, 10.35 g/kg) for 14 days. The protective effects of BHTD on the brain and gut were evaluated by neurological function scores, cerebral infarction area, levels of brain injury markers (S-100B, NGB), indicators of gut permeability (FD-4) and bacterial translocation (DAO, LPS, D-lactate), and tight junction proteins (Occludin, Claudin-1, ZO-1) in brain and colon. 16S rRNA gene sequencing and metabolomic analysis were utilized to analyze the effects on gut microecology and screen for marker metabolites to explore potential mechanisms of BHTD protection against ischemic stroke. BHTD could effectively mitigate brain impairment, including reducing neurological damage, decreasing cerebral infarction and repairing the blood–brain barrier, and BHTD showed the best effect at the dose of 10.35 g/kg. Moreover, BHTD reversed gut injury induced by ischemic stroke, as evidenced by decreased intestinal permeability, reduced intestinal bacterial translocation, and enhanced intestinal barrier integrity. In addition, BHTD rescued gut microbiota dysbiosis by increasing the abundance of beneficial bacteria, including Turicibacter and Faecalibaculum. Transplantation of the gut microbiota remodeled by BHTD into ischemic stroke rats recapitulated the protective effects of BHTD. Especially, BHTD upregulated tryptophan metabolism, which promoted gut microbiota to produce more indole lactic acid (ILA). Notably, supplementation with ILA by gavage could alleviate stroke injury, which suggested that driving the production of ILA in the gut might be a novel treatment for ischemic stroke. BHTD could increase gut microbiota-derived indole lactic acid to attenuate ischemic stroke via the gut-brain axis. Our current finding provides evidence that traditional Chinese medicine can ameliorate central diseases through regulating the gut microbiology.","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"33 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Buqi-Huoxue-Tongnao decoction drives gut microbiota-derived indole lactic acid to attenuate ischemic stroke via the gut-brain axis\",\"authors\":\"Yarui Liu, Peng Zhao, Zheng Cai, Peishi He, Jiahan Wang, Haoqing He, Zhibo Zhu, Xiaowen Guo, Ke Ma, Kang Peng, Jie Zhao\",\"doi\":\"10.1186/s13020-024-00991-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ischemic stroke belongs to “apoplexy” and its pathogenesis is characterized by qi deficiency and blood stasis combining with phlegm-damp clouding orifices. Buqi-Huoxue-Tongnao decoction (BHTD) is a traditional Chinese medicine formula for qi deficiency, blood stasis and phlegm obstruction syndrome. However, its efficacy and potential mechanism on ischemic stroke are still unclear. This study aims to investigate the protective effect and potential mechanism of BHTD against ischemic stroke. Middle cerebral artery occlusion (MCAO) surgery was carried out to establish an ischemic stroke model in rats. Subsequently, the rats were gavaged with different doses of BHTD (2.59, 5.175, 10.35 g/kg) for 14 days. The protective effects of BHTD on the brain and gut were evaluated by neurological function scores, cerebral infarction area, levels of brain injury markers (S-100B, NGB), indicators of gut permeability (FD-4) and bacterial translocation (DAO, LPS, D-lactate), and tight junction proteins (Occludin, Claudin-1, ZO-1) in brain and colon. 16S rRNA gene sequencing and metabolomic analysis were utilized to analyze the effects on gut microecology and screen for marker metabolites to explore potential mechanisms of BHTD protection against ischemic stroke. BHTD could effectively mitigate brain impairment, including reducing neurological damage, decreasing cerebral infarction and repairing the blood–brain barrier, and BHTD showed the best effect at the dose of 10.35 g/kg. Moreover, BHTD reversed gut injury induced by ischemic stroke, as evidenced by decreased intestinal permeability, reduced intestinal bacterial translocation, and enhanced intestinal barrier integrity. In addition, BHTD rescued gut microbiota dysbiosis by increasing the abundance of beneficial bacteria, including Turicibacter and Faecalibaculum. Transplantation of the gut microbiota remodeled by BHTD into ischemic stroke rats recapitulated the protective effects of BHTD. Especially, BHTD upregulated tryptophan metabolism, which promoted gut microbiota to produce more indole lactic acid (ILA). Notably, supplementation with ILA by gavage could alleviate stroke injury, which suggested that driving the production of ILA in the gut might be a novel treatment for ischemic stroke. BHTD could increase gut microbiota-derived indole lactic acid to attenuate ischemic stroke via the gut-brain axis. Our current finding provides evidence that traditional Chinese medicine can ameliorate central diseases through regulating the gut microbiology.\",\"PeriodicalId\":10266,\"journal\":{\"name\":\"Chinese Medicine\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13020-024-00991-1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INTEGRATIVE & COMPLEMENTARY MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13020-024-00991-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

缺血性中风属于 "中风 "范畴,其病机特点是气虚血瘀、痰湿蒙窍。不气归脾汤是治疗气虚血瘀痰阻证的中药方剂。然而,它对缺血性中风的疗效和潜在机制仍不清楚。本研究旨在探讨BHTD对缺血性中风的保护作用及其潜在机制。通过大脑中动脉闭塞(MCAO)手术建立缺血性脑卒中模型。随后,给大鼠灌胃不同剂量的 BHTD(2.59、5.175 和 10.35 克/千克),持续 14 天。通过神经功能评分、脑梗塞面积、脑损伤标志物(S-100B、NGB)水平、肠道通透性指标(FD-4)和细菌转运(DAO、LPS、D-乳酸盐)以及脑和结肠中的紧密连接蛋白(Occludin、Claudin-1、ZO-1)来评估 BHTD 对大脑和肠道的保护作用。利用 16S rRNA 基因测序和代谢组学分析来分析对肠道微生态的影响,并筛选标记代谢物,以探索 BHTD 保护缺血性中风的潜在机制。BHTD能有效缓解脑损伤,包括减轻神经损伤、减少脑梗塞和修复血脑屏障。此外,BHTD 还能逆转缺血性中风引起的肠道损伤,表现为肠道通透性降低、肠道细菌转运减少、肠道屏障完整性增强。此外,BHTD 还能增加有益菌(包括 Turicibacter 和 Faecalibaculum)的数量,从而缓解肠道微生物群失调。将经 BHTD 重塑的肠道微生物群移植到缺血性中风大鼠体内,可再现 BHTD 的保护作用。特别是,BHTD能促进色氨酸代谢,从而促进肠道微生物群产生更多的吲哚乳酸(ILA)。值得注意的是,通过灌胃补充吲哚乳酸可以缓解中风损伤,这表明促进肠道产生吲哚乳酸可能是治疗缺血性中风的一种新方法。BHTD可增加肠道微生物群衍生的吲哚乳酸,从而通过肠脑轴减轻缺血性中风。我们目前的发现为中药通过调节肠道微生物改善中枢疾病提供了证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Buqi-Huoxue-Tongnao decoction drives gut microbiota-derived indole lactic acid to attenuate ischemic stroke via the gut-brain axis
Ischemic stroke belongs to “apoplexy” and its pathogenesis is characterized by qi deficiency and blood stasis combining with phlegm-damp clouding orifices. Buqi-Huoxue-Tongnao decoction (BHTD) is a traditional Chinese medicine formula for qi deficiency, blood stasis and phlegm obstruction syndrome. However, its efficacy and potential mechanism on ischemic stroke are still unclear. This study aims to investigate the protective effect and potential mechanism of BHTD against ischemic stroke. Middle cerebral artery occlusion (MCAO) surgery was carried out to establish an ischemic stroke model in rats. Subsequently, the rats were gavaged with different doses of BHTD (2.59, 5.175, 10.35 g/kg) for 14 days. The protective effects of BHTD on the brain and gut were evaluated by neurological function scores, cerebral infarction area, levels of brain injury markers (S-100B, NGB), indicators of gut permeability (FD-4) and bacterial translocation (DAO, LPS, D-lactate), and tight junction proteins (Occludin, Claudin-1, ZO-1) in brain and colon. 16S rRNA gene sequencing and metabolomic analysis were utilized to analyze the effects on gut microecology and screen for marker metabolites to explore potential mechanisms of BHTD protection against ischemic stroke. BHTD could effectively mitigate brain impairment, including reducing neurological damage, decreasing cerebral infarction and repairing the blood–brain barrier, and BHTD showed the best effect at the dose of 10.35 g/kg. Moreover, BHTD reversed gut injury induced by ischemic stroke, as evidenced by decreased intestinal permeability, reduced intestinal bacterial translocation, and enhanced intestinal barrier integrity. In addition, BHTD rescued gut microbiota dysbiosis by increasing the abundance of beneficial bacteria, including Turicibacter and Faecalibaculum. Transplantation of the gut microbiota remodeled by BHTD into ischemic stroke rats recapitulated the protective effects of BHTD. Especially, BHTD upregulated tryptophan metabolism, which promoted gut microbiota to produce more indole lactic acid (ILA). Notably, supplementation with ILA by gavage could alleviate stroke injury, which suggested that driving the production of ILA in the gut might be a novel treatment for ischemic stroke. BHTD could increase gut microbiota-derived indole lactic acid to attenuate ischemic stroke via the gut-brain axis. Our current finding provides evidence that traditional Chinese medicine can ameliorate central diseases through regulating the gut microbiology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Medicine
Chinese Medicine INTEGRATIVE & COMPLEMENTARY MEDICINE-PHARMACOLOGY & PHARMACY
CiteScore
7.90
自引率
4.10%
发文量
133
审稿时长
31 weeks
期刊介绍: Chinese Medicine is an open access, online journal publishing evidence-based, scientifically justified, and ethical research into all aspects of Chinese medicine. Areas of interest include recent advances in herbal medicine, clinical nutrition, clinical diagnosis, acupuncture, pharmaceutics, biomedical sciences, epidemiology, education, informatics, sociology, and psychology that are relevant and significant to Chinese medicine. Examples of research approaches include biomedical experimentation, high-throughput technology, clinical trials, systematic reviews, meta-analysis, sampled surveys, simulation, data curation, statistics, omics, translational medicine, and integrative methodologies. Chinese Medicine is a credible channel to communicate unbiased scientific data, information, and knowledge in Chinese medicine among researchers, clinicians, academics, and students in Chinese medicine and other scientific disciplines of medicine.
期刊最新文献
Acupuncture improves the symptoms, serum ghrelin, and autonomic nervous system of patients with postprandial distress syndrome: a randomized controlled trial. Potential of natural products and gut microbiome in tumor immunotherapy. Metabolomics and proteomics analyses of Chrysanthemi Flos: a mechanism study of changes in proteins and metabolites by processing methods. An integrated approach for studying exposure, metabolism, and disposition of traditional Chinese medicine using PATBS and MDRB tools: a case study of semen Armeniacae Amarum. Taraxerone inhibits M1 polarization and alleviates sepsis-induced acute lung injury by activating SIRT1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1