多折射 PDE 的保结构学习

Süleyman Yıldız, Pawan Goyal, Peter Benner
{"title":"多折射 PDE 的保结构学习","authors":"Süleyman Yıldız, Pawan Goyal, Peter Benner","doi":"arxiv-2409.10432","DOIUrl":null,"url":null,"abstract":"This paper presents an energy-preserving machine learning method for\ninferring reduced-order models (ROMs) by exploiting the multi-symplectic form\nof partial differential equations (PDEs). The vast majority of\nenergy-preserving reduced-order methods use symplectic Galerkin projection to\nconstruct reduced-order Hamiltonian models by projecting the full models onto a\nsymplectic subspace. However, symplectic projection requires the existence of\nfully discrete operators, and in many cases, such as black-box PDE solvers,\nthese operators are inaccessible. In this work, we propose an energy-preserving\nmachine learning method that can infer the dynamics of the given PDE using data\nonly, so that the proposed framework does not depend on the fully discrete\noperators. In this context, the proposed method is non-intrusive. The proposed\nmethod is grey box in the sense that it requires only some basic knowledge of\nthe multi-symplectic model at the partial differential equation level. We prove\nthat the proposed method satisfies spatially discrete local energy conservation\nand preserves the multi-symplectic conservation laws. We test our method on the\nlinear wave equation, the Korteweg-de Vries equation, and the\nZakharov-Kuznetsov equation. We test the generalization of our learned models\nby testing them far outside the training time interval.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure-preserving learning for multi-symplectic PDEs\",\"authors\":\"Süleyman Yıldız, Pawan Goyal, Peter Benner\",\"doi\":\"arxiv-2409.10432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an energy-preserving machine learning method for\\ninferring reduced-order models (ROMs) by exploiting the multi-symplectic form\\nof partial differential equations (PDEs). The vast majority of\\nenergy-preserving reduced-order methods use symplectic Galerkin projection to\\nconstruct reduced-order Hamiltonian models by projecting the full models onto a\\nsymplectic subspace. However, symplectic projection requires the existence of\\nfully discrete operators, and in many cases, such as black-box PDE solvers,\\nthese operators are inaccessible. In this work, we propose an energy-preserving\\nmachine learning method that can infer the dynamics of the given PDE using data\\nonly, so that the proposed framework does not depend on the fully discrete\\noperators. In this context, the proposed method is non-intrusive. The proposed\\nmethod is grey box in the sense that it requires only some basic knowledge of\\nthe multi-symplectic model at the partial differential equation level. We prove\\nthat the proposed method satisfies spatially discrete local energy conservation\\nand preserves the multi-symplectic conservation laws. We test our method on the\\nlinear wave equation, the Korteweg-de Vries equation, and the\\nZakharov-Kuznetsov equation. We test the generalization of our learned models\\nby testing them far outside the training time interval.\",\"PeriodicalId\":501162,\"journal\":{\"name\":\"arXiv - MATH - Numerical Analysis\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种能量保护机器学习方法,利用偏微分方程(PDEs)的多折射形式来推导降阶模型(ROMs)。绝大多数能量守恒降阶方法都使用交映伽勒金投影法,通过将完整模型投影到交映子空间来构建降阶哈密顿模型。然而,交映投影需要存在离散的算子,而在很多情况下,比如黑盒 PDE 求解器,这些算子是无法获得的。在这项工作中,我们提出了一种能量保护机器学习方法,该方法可以仅使用数据来推断给定 PDE 的动力学,因此所提出的框架不依赖于完全离散的算子。在这种情况下,提出的方法是非侵入式的。从这个意义上说,所提出的方法是灰箱方法,它只需要一些偏微分方程层面的多交集模型的基本知识。我们证明了所提出的方法满足空间离散局部能量守恒,并保留了多交点守恒定律。我们在线性波方程、Korteweg-de Vries方程和Zakharov-Kuznetsov方程上测试了我们的方法。我们通过在训练时间间隔之外测试所学模型的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structure-preserving learning for multi-symplectic PDEs
This paper presents an energy-preserving machine learning method for inferring reduced-order models (ROMs) by exploiting the multi-symplectic form of partial differential equations (PDEs). The vast majority of energy-preserving reduced-order methods use symplectic Galerkin projection to construct reduced-order Hamiltonian models by projecting the full models onto a symplectic subspace. However, symplectic projection requires the existence of fully discrete operators, and in many cases, such as black-box PDE solvers, these operators are inaccessible. In this work, we propose an energy-preserving machine learning method that can infer the dynamics of the given PDE using data only, so that the proposed framework does not depend on the fully discrete operators. In this context, the proposed method is non-intrusive. The proposed method is grey box in the sense that it requires only some basic knowledge of the multi-symplectic model at the partial differential equation level. We prove that the proposed method satisfies spatially discrete local energy conservation and preserves the multi-symplectic conservation laws. We test our method on the linear wave equation, the Korteweg-de Vries equation, and the Zakharov-Kuznetsov equation. We test the generalization of our learned models by testing them far outside the training time interval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Lightweight, Geometrically Flexible Fast Algorithm for the Evaluation of Layer and Volume Potentials Adaptive Time-Step Semi-Implicit One-Step Taylor Scheme for Stiff Ordinary Differential Equations Conditions aux limites fortement non lin{é}aires pour les {é}quations d'Euler de la dynamique des gaz Fully guaranteed and computable error bounds on the energy for periodic Kohn-Sham equations with convex density functionals A novel Mortar Method Integration using Radial Basis Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1