FB-HyDON:通过超网络和有限基域分解对复杂 PDE 进行参数高效的物理信息算子学习

Milad Ramezankhani, Rishi Yash Parekh, Anirudh Deodhar, Dagnachew Birru
{"title":"FB-HyDON:通过超网络和有限基域分解对复杂 PDE 进行参数高效的物理信息算子学习","authors":"Milad Ramezankhani, Rishi Yash Parekh, Anirudh Deodhar, Dagnachew Birru","doi":"arxiv-2409.09207","DOIUrl":null,"url":null,"abstract":"Deep operator networks (DeepONet) and neural operators have gained\nsignificant attention for their ability to map infinite-dimensional function\nspaces and perform zero-shot super-resolution. However, these models often\nrequire large datasets for effective training. While physics-informed operators\noffer a data-agnostic learning approach, they introduce additional training\ncomplexities and convergence issues, especially in highly nonlinear systems. To\novercome these challenges, we introduce Finite Basis Physics-Informed\nHyperDeepONet (FB-HyDON), an advanced operator architecture featuring intrinsic\ndomain decomposition. By leveraging hypernetworks and finite basis functions,\nFB-HyDON effectively mitigates the training limitations associated with\nexisting physics-informed operator learning methods. We validated our approach\non the high-frequency harmonic oscillator, Burgers' equation at different\nviscosity levels, and Allen-Cahn equation demonstrating substantial\nimprovements over other operator learning models.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FB-HyDON: Parameter-Efficient Physics-Informed Operator Learning of Complex PDEs via Hypernetwork and Finite Basis Domain Decomposition\",\"authors\":\"Milad Ramezankhani, Rishi Yash Parekh, Anirudh Deodhar, Dagnachew Birru\",\"doi\":\"arxiv-2409.09207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep operator networks (DeepONet) and neural operators have gained\\nsignificant attention for their ability to map infinite-dimensional function\\nspaces and perform zero-shot super-resolution. However, these models often\\nrequire large datasets for effective training. While physics-informed operators\\noffer a data-agnostic learning approach, they introduce additional training\\ncomplexities and convergence issues, especially in highly nonlinear systems. To\\novercome these challenges, we introduce Finite Basis Physics-Informed\\nHyperDeepONet (FB-HyDON), an advanced operator architecture featuring intrinsic\\ndomain decomposition. By leveraging hypernetworks and finite basis functions,\\nFB-HyDON effectively mitigates the training limitations associated with\\nexisting physics-informed operator learning methods. We validated our approach\\non the high-frequency harmonic oscillator, Burgers' equation at different\\nviscosity levels, and Allen-Cahn equation demonstrating substantial\\nimprovements over other operator learning models.\",\"PeriodicalId\":501162,\"journal\":{\"name\":\"arXiv - MATH - Numerical Analysis\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度算子网络(DeepONet)和神经算子因其映射无限维函数空间和执行零镜头超分辨率的能力而备受关注。然而,这些模型通常需要大型数据集才能进行有效训练。虽然物理信息算子提供了一种与数据无关的学习方法,但它们带来了额外的训练复杂性和收敛问题,尤其是在高度非线性系统中。为了克服这些挑战,我们引入了有限基础物理信息超深层网络(FB-HyDON),这是一种先进的算子架构,具有本域分解功能。通过利用超网络和有限基函数,FB-HyDON 有效地缓解了与现有物理信息算子学习方法相关的训练限制。我们在高频谐波振荡器、不同粘度水平下的伯格斯方程和艾伦-卡恩方程上验证了我们的方法,结果表明与其他算子学习模型相比,我们的方法有了很大改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FB-HyDON: Parameter-Efficient Physics-Informed Operator Learning of Complex PDEs via Hypernetwork and Finite Basis Domain Decomposition
Deep operator networks (DeepONet) and neural operators have gained significant attention for their ability to map infinite-dimensional function spaces and perform zero-shot super-resolution. However, these models often require large datasets for effective training. While physics-informed operators offer a data-agnostic learning approach, they introduce additional training complexities and convergence issues, especially in highly nonlinear systems. To overcome these challenges, we introduce Finite Basis Physics-Informed HyperDeepONet (FB-HyDON), an advanced operator architecture featuring intrinsic domain decomposition. By leveraging hypernetworks and finite basis functions, FB-HyDON effectively mitigates the training limitations associated with existing physics-informed operator learning methods. We validated our approach on the high-frequency harmonic oscillator, Burgers' equation at different viscosity levels, and Allen-Cahn equation demonstrating substantial improvements over other operator learning models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Lightweight, Geometrically Flexible Fast Algorithm for the Evaluation of Layer and Volume Potentials Adaptive Time-Step Semi-Implicit One-Step Taylor Scheme for Stiff Ordinary Differential Equations Conditions aux limites fortement non lin{é}aires pour les {é}quations d'Euler de la dynamique des gaz Fully guaranteed and computable error bounds on the energy for periodic Kohn-Sham equations with convex density functionals A novel Mortar Method Integration using Radial Basis Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1