{"title":"无人机前后起落架液压系统基于阻抗的新型并行协同控制方法","authors":"Hua Qiu, Xinyu Wang, Guozhao Shi, Xinrong Li, Shuai Zhang, Xiangdong Kong, Kaixian Ba, Bin Yu","doi":"10.3390/electronics13183684","DOIUrl":null,"url":null,"abstract":"Cargo handling issues affect the ability of large heavy-duty Unmanned Aerial Vehicles (UAVs) to transport cargo and limit the development of large UAVs. Compared to conventional landing gear, hydraulically controlled landing gear can tilt the drone within a specified angle, facilitating smoother loading and unloading of goods. Therefore, it is important to study the hydraulic landing gear control system for a UAV to make the UAV’s tilt possible. In this paper, an impedance-based parallel cooperative control method for front and rear landing gear hydraulic systems of large heavy-duty UAVs is presented, which can achieve UAV tilting within a reasonable angle during the loading and unloading of cargoes by large, heavy-duty UAVs. This paper establishes the physical model of the UAV’s landing gear, the mathematical model of the hydraulic system, and the kinematic model of the airframe. Through kinematic analysis, the correlation between each hydraulic dive unit’s (HDU’s) extension length in the landing gear and the UAV’s tilt angle is established. This paper introduces a two-fold based-loop parallel control technique, featuring angle based-loop control for the UAV’s front and position based-loop control for its rear landing gear. It aims to enable the UAV to freely tilt for loading and unloading cargo at a predetermined angle, by measuring the UAV’s tilting angle, the HDU’s force exerted on the landing gear, and its positional parameters. Ultimately, the practicality of this technique is confirmed through simulations and experiments.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":"22 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Impedance-Based Parallel Cooperative Control Method for Front and Rear Landing Gear Hydraulic Systems of UAVs\",\"authors\":\"Hua Qiu, Xinyu Wang, Guozhao Shi, Xinrong Li, Shuai Zhang, Xiangdong Kong, Kaixian Ba, Bin Yu\",\"doi\":\"10.3390/electronics13183684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cargo handling issues affect the ability of large heavy-duty Unmanned Aerial Vehicles (UAVs) to transport cargo and limit the development of large UAVs. Compared to conventional landing gear, hydraulically controlled landing gear can tilt the drone within a specified angle, facilitating smoother loading and unloading of goods. Therefore, it is important to study the hydraulic landing gear control system for a UAV to make the UAV’s tilt possible. In this paper, an impedance-based parallel cooperative control method for front and rear landing gear hydraulic systems of large heavy-duty UAVs is presented, which can achieve UAV tilting within a reasonable angle during the loading and unloading of cargoes by large, heavy-duty UAVs. This paper establishes the physical model of the UAV’s landing gear, the mathematical model of the hydraulic system, and the kinematic model of the airframe. Through kinematic analysis, the correlation between each hydraulic dive unit’s (HDU’s) extension length in the landing gear and the UAV’s tilt angle is established. This paper introduces a two-fold based-loop parallel control technique, featuring angle based-loop control for the UAV’s front and position based-loop control for its rear landing gear. It aims to enable the UAV to freely tilt for loading and unloading cargo at a predetermined angle, by measuring the UAV’s tilting angle, the HDU’s force exerted on the landing gear, and its positional parameters. Ultimately, the practicality of this technique is confirmed through simulations and experiments.\",\"PeriodicalId\":11646,\"journal\":{\"name\":\"Electronics\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/electronics13183684\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/electronics13183684","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Novel Impedance-Based Parallel Cooperative Control Method for Front and Rear Landing Gear Hydraulic Systems of UAVs
Cargo handling issues affect the ability of large heavy-duty Unmanned Aerial Vehicles (UAVs) to transport cargo and limit the development of large UAVs. Compared to conventional landing gear, hydraulically controlled landing gear can tilt the drone within a specified angle, facilitating smoother loading and unloading of goods. Therefore, it is important to study the hydraulic landing gear control system for a UAV to make the UAV’s tilt possible. In this paper, an impedance-based parallel cooperative control method for front and rear landing gear hydraulic systems of large heavy-duty UAVs is presented, which can achieve UAV tilting within a reasonable angle during the loading and unloading of cargoes by large, heavy-duty UAVs. This paper establishes the physical model of the UAV’s landing gear, the mathematical model of the hydraulic system, and the kinematic model of the airframe. Through kinematic analysis, the correlation between each hydraulic dive unit’s (HDU’s) extension length in the landing gear and the UAV’s tilt angle is established. This paper introduces a two-fold based-loop parallel control technique, featuring angle based-loop control for the UAV’s front and position based-loop control for its rear landing gear. It aims to enable the UAV to freely tilt for loading and unloading cargo at a predetermined angle, by measuring the UAV’s tilting angle, the HDU’s force exerted on the landing gear, and its positional parameters. Ultimately, the practicality of this technique is confirmed through simulations and experiments.
ElectronicsComputer Science-Computer Networks and Communications
CiteScore
1.10
自引率
10.30%
发文量
3515
审稿时长
16.71 days
期刊介绍:
Electronics (ISSN 2079-9292; CODEN: ELECGJ) is an international, open access journal on the science of electronics and its applications published quarterly online by MDPI.