处理叙述:用于文本内容知识提取的创新图模型和查询 †

IF 2.6 3区 工程技术 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Electronics Pub Date : 2024-09-17 DOI:10.3390/electronics13183688
Genoveva Vargas-Solar
{"title":"处理叙述:用于文本内容知识提取的创新图模型和查询 †","authors":"Genoveva Vargas-Solar","doi":"10.3390/electronics13183688","DOIUrl":null,"url":null,"abstract":"The internet contains vast amounts of text-based information across various domains, such as commercial documents, medical records, scientific research, engineering tests, and events affecting urban and natural environments. Extracting knowledge from these texts requires a deep understanding of natural language nuances and accurately representing content while preserving essential information. This process enables effective knowledge extraction, inference, and discovery. This paper proposes a critical study of state-of-the-art contributions exploring the complexities and emerging trends in representing, querying, and analysing content extracted from textual data. This study’s hypothesis states that graph-based representations can be particularly effective when annotated with sophisticated querying and analytics techniques. This hypothesis is discussed through the lenses of contributions in linguistics, natural language processing, graph theory, databases, and artificial intelligence.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":"6 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Processing the Narrative: Innovative Graph Models and Queries for Textual Content Knowledge Extraction †\",\"authors\":\"Genoveva Vargas-Solar\",\"doi\":\"10.3390/electronics13183688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The internet contains vast amounts of text-based information across various domains, such as commercial documents, medical records, scientific research, engineering tests, and events affecting urban and natural environments. Extracting knowledge from these texts requires a deep understanding of natural language nuances and accurately representing content while preserving essential information. This process enables effective knowledge extraction, inference, and discovery. This paper proposes a critical study of state-of-the-art contributions exploring the complexities and emerging trends in representing, querying, and analysing content extracted from textual data. This study’s hypothesis states that graph-based representations can be particularly effective when annotated with sophisticated querying and analytics techniques. This hypothesis is discussed through the lenses of contributions in linguistics, natural language processing, graph theory, databases, and artificial intelligence.\",\"PeriodicalId\":11646,\"journal\":{\"name\":\"Electronics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/electronics13183688\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/electronics13183688","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

互联网包含大量基于文本的信息,涉及各个领域,如商业文档、医疗记录、科学研究、工程测试以及影响城市和自然环境的事件。从这些文本中提取知识需要深入理解自然语言的细微差别,并在保留基本信息的同时准确地表达内容。这一过程可实现有效的知识提取、推理和发现。本文建议对最先进的研究成果进行批判性研究,探讨在表示、查询和分析从文本数据中提取的内容方面的复杂性和新兴趋势。本研究提出的假设是,当使用复杂的查询和分析技术进行注释时,基于图的表示法会特别有效。我们将从语言学、自然语言处理、图论、数据库和人工智能等领域的研究成果中探讨这一假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Processing the Narrative: Innovative Graph Models and Queries for Textual Content Knowledge Extraction †
The internet contains vast amounts of text-based information across various domains, such as commercial documents, medical records, scientific research, engineering tests, and events affecting urban and natural environments. Extracting knowledge from these texts requires a deep understanding of natural language nuances and accurately representing content while preserving essential information. This process enables effective knowledge extraction, inference, and discovery. This paper proposes a critical study of state-of-the-art contributions exploring the complexities and emerging trends in representing, querying, and analysing content extracted from textual data. This study’s hypothesis states that graph-based representations can be particularly effective when annotated with sophisticated querying and analytics techniques. This hypothesis is discussed through the lenses of contributions in linguistics, natural language processing, graph theory, databases, and artificial intelligence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronics
Electronics Computer Science-Computer Networks and Communications
CiteScore
1.10
自引率
10.30%
发文量
3515
审稿时长
16.71 days
期刊介绍: Electronics (ISSN 2079-9292; CODEN: ELECGJ) is an international, open access journal on the science of electronics and its applications published quarterly online by MDPI.
期刊最新文献
A Deep Reinforcement Learning Method Based on a Transformer Model for the Flexible Job Shop Scheduling Problem Performance Evaluation of UDP-Based Data Transmission with Acknowledgment for Various Network Topologies in IoT Environments Multimodal Social Media Fake News Detection Based on 1D-CCNet Attention Mechanism Real-Time Semantic Segmentation Algorithm for Street Scenes Based on Attention Mechanism and Feature Fusion Attention-Enhanced Guided Multimodal and Semi-Supervised Networks for Visual Acuity (VA) Prediction after Anti-VEGF Therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1