ChatGPT 如何看待历史股票回报率?LLM 股票回报率预测中的外推法和误判法

Shuaiyu Chen, T. Clifton Green, Huseyin Gulen, Dexin Zhou
{"title":"ChatGPT 如何看待历史股票回报率?LLM 股票回报率预测中的外推法和误判法","authors":"Shuaiyu Chen, T. Clifton Green, Huseyin Gulen, Dexin Zhou","doi":"arxiv-2409.11540","DOIUrl":null,"url":null,"abstract":"We examine how large language models (LLMs) interpret historical stock\nreturns and compare their forecasts with estimates from a crowd-sourced\nplatform for ranking stocks. While stock returns exhibit short-term reversals,\nLLM forecasts over-extrapolate, placing excessive weight on recent performance\nsimilar to humans. LLM forecasts appear optimistic relative to historical and\nfuture realized returns. When prompted for 80% confidence interval predictions,\nLLM responses are better calibrated than survey evidence but are pessimistic\nabout outliers, leading to skewed forecast distributions. The findings suggest\nLLMs manifest common behavioral biases when forecasting expected returns but\nare better at gauging risks than humans.","PeriodicalId":501273,"journal":{"name":"arXiv - ECON - General Economics","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What Does ChatGPT Make of Historical Stock Returns? Extrapolation and Miscalibration in LLM Stock Return Forecasts\",\"authors\":\"Shuaiyu Chen, T. Clifton Green, Huseyin Gulen, Dexin Zhou\",\"doi\":\"arxiv-2409.11540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine how large language models (LLMs) interpret historical stock\\nreturns and compare their forecasts with estimates from a crowd-sourced\\nplatform for ranking stocks. While stock returns exhibit short-term reversals,\\nLLM forecasts over-extrapolate, placing excessive weight on recent performance\\nsimilar to humans. LLM forecasts appear optimistic relative to historical and\\nfuture realized returns. When prompted for 80% confidence interval predictions,\\nLLM responses are better calibrated than survey evidence but are pessimistic\\nabout outliers, leading to skewed forecast distributions. The findings suggest\\nLLMs manifest common behavioral biases when forecasting expected returns but\\nare better at gauging risks than humans.\",\"PeriodicalId\":501273,\"journal\":{\"name\":\"arXiv - ECON - General Economics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - ECON - General Economics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - General Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了大型语言模型(LLMs)如何解释历史股票回报率,并将其预测结果与股票排名众包平台的估计结果进行了比较。虽然股票回报率表现出短期反转,但 LLM 预测过度推断,过分看重与人类相似的近期表现。相对于历史和未来实现的回报率,LLM 预测显得比较乐观。当被要求进行 80% 置信区间预测时,LLM 的回答比调查证据的校准效果更好,但对异常值持悲观态度,导致预测分布偏斜。研究结果表明,LLM 在预测预期收益时表现出常见的行为偏差,但在衡量风险方面比人类更胜一筹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
What Does ChatGPT Make of Historical Stock Returns? Extrapolation and Miscalibration in LLM Stock Return Forecasts
We examine how large language models (LLMs) interpret historical stock returns and compare their forecasts with estimates from a crowd-sourced platform for ranking stocks. While stock returns exhibit short-term reversals, LLM forecasts over-extrapolate, placing excessive weight on recent performance similar to humans. LLM forecasts appear optimistic relative to historical and future realized returns. When prompted for 80% confidence interval predictions, LLM responses are better calibrated than survey evidence but are pessimistic about outliers, leading to skewed forecast distributions. The findings suggest LLMs manifest common behavioral biases when forecasting expected returns but are better at gauging risks than humans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
It depends: Varieties of defining growth dependence Experimental Evidence That Conversational Artificial Intelligence Can Steer Consumer Behavior Without Detection Cognitive Hierarchy in Day-to-day Network Flow Dynamics The long-term human capital and health impacts of a pollution reduction programme What Does ChatGPT Make of Historical Stock Returns? Extrapolation and Miscalibration in LLM Stock Return Forecasts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1