Gabriele Ciravegna, Franco Galante, Danilo Giordano, Tania Cerquitelli, Marco Mellia
{"title":"电阻点焊中的故障预测:机器学习方法比较","authors":"Gabriele Ciravegna, Franco Galante, Danilo Giordano, Tania Cerquitelli, Marco Mellia","doi":"10.3390/electronics13183693","DOIUrl":null,"url":null,"abstract":"Resistance spot welding is widely adopted in manufacturing and is characterized by high reliability and simple automation in the production line. The detection of defective welds is a difficult task that requires either destructive or expensive and slow non-destructive testing (e.g., ultrasound). The robots performing the welding automatically collect contextual and process-specific data. In this paper, we test whether these data can be used to predict defective welds. To do so, we use a dataset collected in a real industrial plant that describes welding-related data labeled with ultrasonic quality checks. We use these data to develop several pipelines based on shallow and deep learning machine learning algorithms and test the performance of these pipelines in predicting defective welds. Our results show that, despite the development of different pipelines and complex models, the machine-learning-based defect detection algorithms achieve limited performance. Using a qualitative analysis of model predictions, we show that correct predictions are often a consequence of inherent biases and intrinsic limitations in the data. We therefore conclude that the automatically collected data have limitations that hamper fault detection in a running production plant.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":"46 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault Prediction in Resistance Spot Welding: A Comparison of Machine Learning Approaches\",\"authors\":\"Gabriele Ciravegna, Franco Galante, Danilo Giordano, Tania Cerquitelli, Marco Mellia\",\"doi\":\"10.3390/electronics13183693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resistance spot welding is widely adopted in manufacturing and is characterized by high reliability and simple automation in the production line. The detection of defective welds is a difficult task that requires either destructive or expensive and slow non-destructive testing (e.g., ultrasound). The robots performing the welding automatically collect contextual and process-specific data. In this paper, we test whether these data can be used to predict defective welds. To do so, we use a dataset collected in a real industrial plant that describes welding-related data labeled with ultrasonic quality checks. We use these data to develop several pipelines based on shallow and deep learning machine learning algorithms and test the performance of these pipelines in predicting defective welds. Our results show that, despite the development of different pipelines and complex models, the machine-learning-based defect detection algorithms achieve limited performance. Using a qualitative analysis of model predictions, we show that correct predictions are often a consequence of inherent biases and intrinsic limitations in the data. We therefore conclude that the automatically collected data have limitations that hamper fault detection in a running production plant.\",\"PeriodicalId\":11646,\"journal\":{\"name\":\"Electronics\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/electronics13183693\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/electronics13183693","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Fault Prediction in Resistance Spot Welding: A Comparison of Machine Learning Approaches
Resistance spot welding is widely adopted in manufacturing and is characterized by high reliability and simple automation in the production line. The detection of defective welds is a difficult task that requires either destructive or expensive and slow non-destructive testing (e.g., ultrasound). The robots performing the welding automatically collect contextual and process-specific data. In this paper, we test whether these data can be used to predict defective welds. To do so, we use a dataset collected in a real industrial plant that describes welding-related data labeled with ultrasonic quality checks. We use these data to develop several pipelines based on shallow and deep learning machine learning algorithms and test the performance of these pipelines in predicting defective welds. Our results show that, despite the development of different pipelines and complex models, the machine-learning-based defect detection algorithms achieve limited performance. Using a qualitative analysis of model predictions, we show that correct predictions are often a consequence of inherent biases and intrinsic limitations in the data. We therefore conclude that the automatically collected data have limitations that hamper fault detection in a running production plant.
ElectronicsComputer Science-Computer Networks and Communications
CiteScore
1.10
自引率
10.30%
发文量
3515
审稿时长
16.71 days
期刊介绍:
Electronics (ISSN 2079-9292; CODEN: ELECGJ) is an international, open access journal on the science of electronics and its applications published quarterly online by MDPI.