Zhimei Song , Jinhong Li , Kaikai Cui , Mei Han , Dan Fang , Chang Cai , Nan Zhao , Jinge Wang , Lidong Chen
{"title":"改性 TS-1 沸石支撑氧化钴催化乙苯氧化为苯乙酮的绿色催化反应","authors":"Zhimei Song , Jinhong Li , Kaikai Cui , Mei Han , Dan Fang , Chang Cai , Nan Zhao , Jinge Wang , Lidong Chen","doi":"10.1016/j.micromeso.2024.113337","DOIUrl":null,"url":null,"abstract":"<div><p>The development of catalysts and processes with high activity, good selectivity and easy reproducibility and regeneration is the core of the solution for the oxidation of ethylbenzene to acetophenone. In this paper, the catalyst of cobalt metal oxide supported on TS-1 zeolite co-modified by alkali treatment and titanium silicon composite oxide was prepared. The catalysts were characterized by XRD, Raman, N<sub>2</sub> adsorption-desorption, SEM, TEM, XPS, FT-IR and UV–vis techniques to establish the correlation between physical and chemical properties and catalytic performance. Among the prepared catalysts, SiO<sub>2</sub> and TiO<sub>2</sub> co-coated TS-1 supported 3.75 wt % Co<sub>3</sub>O<sub>4</sub> catalyst showed better oxidation activity. Under the optimized reaction conditions: T = 80 °C, t = 8 h, m<sub>cat</sub> = 0.03 g, <em>n</em>EB: <em>n</em>HAC: <em>n</em>KBr: <em>n</em>H<sub>2</sub>O<sub>2</sub> = 1 : 21: 0.1 : 16, the conversion of ethylbenzene was as high as 86.7 % and the selectivity of acetophenone was 85.6 %. After repeated tests, it showed good cycle and regeneration reaction performance. The high activity of this catalyst is attributed to the synergistic effect of cobalt oxide and TS-1 zeolite, and the mesoporous structure of titanium-silicon composite oxide is conducive to the adsorption and diffusion of reactants, intermediates and products.</p></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"381 ","pages":"Article 113337"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green catalytic oxidation of ethylbenzene to acetophenone over modified TS-1 zeolite supported cobalt oxide\",\"authors\":\"Zhimei Song , Jinhong Li , Kaikai Cui , Mei Han , Dan Fang , Chang Cai , Nan Zhao , Jinge Wang , Lidong Chen\",\"doi\":\"10.1016/j.micromeso.2024.113337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of catalysts and processes with high activity, good selectivity and easy reproducibility and regeneration is the core of the solution for the oxidation of ethylbenzene to acetophenone. In this paper, the catalyst of cobalt metal oxide supported on TS-1 zeolite co-modified by alkali treatment and titanium silicon composite oxide was prepared. The catalysts were characterized by XRD, Raman, N<sub>2</sub> adsorption-desorption, SEM, TEM, XPS, FT-IR and UV–vis techniques to establish the correlation between physical and chemical properties and catalytic performance. Among the prepared catalysts, SiO<sub>2</sub> and TiO<sub>2</sub> co-coated TS-1 supported 3.75 wt % Co<sub>3</sub>O<sub>4</sub> catalyst showed better oxidation activity. Under the optimized reaction conditions: T = 80 °C, t = 8 h, m<sub>cat</sub> = 0.03 g, <em>n</em>EB: <em>n</em>HAC: <em>n</em>KBr: <em>n</em>H<sub>2</sub>O<sub>2</sub> = 1 : 21: 0.1 : 16, the conversion of ethylbenzene was as high as 86.7 % and the selectivity of acetophenone was 85.6 %. After repeated tests, it showed good cycle and regeneration reaction performance. The high activity of this catalyst is attributed to the synergistic effect of cobalt oxide and TS-1 zeolite, and the mesoporous structure of titanium-silicon composite oxide is conducive to the adsorption and diffusion of reactants, intermediates and products.</p></div>\",\"PeriodicalId\":392,\"journal\":{\"name\":\"Microporous and Mesoporous Materials\",\"volume\":\"381 \",\"pages\":\"Article 113337\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microporous and Mesoporous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387181124003597\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181124003597","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Green catalytic oxidation of ethylbenzene to acetophenone over modified TS-1 zeolite supported cobalt oxide
The development of catalysts and processes with high activity, good selectivity and easy reproducibility and regeneration is the core of the solution for the oxidation of ethylbenzene to acetophenone. In this paper, the catalyst of cobalt metal oxide supported on TS-1 zeolite co-modified by alkali treatment and titanium silicon composite oxide was prepared. The catalysts were characterized by XRD, Raman, N2 adsorption-desorption, SEM, TEM, XPS, FT-IR and UV–vis techniques to establish the correlation between physical and chemical properties and catalytic performance. Among the prepared catalysts, SiO2 and TiO2 co-coated TS-1 supported 3.75 wt % Co3O4 catalyst showed better oxidation activity. Under the optimized reaction conditions: T = 80 °C, t = 8 h, mcat = 0.03 g, nEB: nHAC: nKBr: nH2O2 = 1 : 21: 0.1 : 16, the conversion of ethylbenzene was as high as 86.7 % and the selectivity of acetophenone was 85.6 %. After repeated tests, it showed good cycle and regeneration reaction performance. The high activity of this catalyst is attributed to the synergistic effect of cobalt oxide and TS-1 zeolite, and the mesoporous structure of titanium-silicon composite oxide is conducive to the adsorption and diffusion of reactants, intermediates and products.
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.