Elad Sunray, Gil Weinberg, Moriya Rosenfeld, Ori Katz
{"title":"通过声光门控超越散射介质中基于记忆效应矩阵的成像技术","authors":"Elad Sunray, Gil Weinberg, Moriya Rosenfeld, Ori Katz","doi":"10.1063/5.0219316","DOIUrl":null,"url":null,"abstract":"Imaging inside scattering media at optical resolution is a longstanding challenge affecting multiple fields, from bio-medicine to astronomy. In recent years, several groundbreaking techniques for imaging inside scattering media, in particular scattering-matrix-based approaches, have shown great promise. However, due to their reliance on the optical “memory-effect,” these techniques usually suffer from a restricted field of view. Here, we demonstrate that diffraction-limited imaging beyond the optical memory-effect can be robustly achieved by combining acousto-optic spatial-gating with state-of-the-art matrix-based imaging techniques. In particular, we show that this can be achieved by computational processing of scattered light fields captured under scanned acousto-optic modulation. The approach can be directly utilized whenever the ultrasound focus size is of the order of the memory-effect range, independently of the scattering angle.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"29 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond memory-effect matrix-based imaging in scattering media by acousto-optic gating\",\"authors\":\"Elad Sunray, Gil Weinberg, Moriya Rosenfeld, Ori Katz\",\"doi\":\"10.1063/5.0219316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Imaging inside scattering media at optical resolution is a longstanding challenge affecting multiple fields, from bio-medicine to astronomy. In recent years, several groundbreaking techniques for imaging inside scattering media, in particular scattering-matrix-based approaches, have shown great promise. However, due to their reliance on the optical “memory-effect,” these techniques usually suffer from a restricted field of view. Here, we demonstrate that diffraction-limited imaging beyond the optical memory-effect can be robustly achieved by combining acousto-optic spatial-gating with state-of-the-art matrix-based imaging techniques. In particular, we show that this can be achieved by computational processing of scattered light fields captured under scanned acousto-optic modulation. The approach can be directly utilized whenever the ultrasound focus size is of the order of the memory-effect range, independently of the scattering angle.\",\"PeriodicalId\":8198,\"journal\":{\"name\":\"APL Photonics\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0219316\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0219316","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Beyond memory-effect matrix-based imaging in scattering media by acousto-optic gating
Imaging inside scattering media at optical resolution is a longstanding challenge affecting multiple fields, from bio-medicine to astronomy. In recent years, several groundbreaking techniques for imaging inside scattering media, in particular scattering-matrix-based approaches, have shown great promise. However, due to their reliance on the optical “memory-effect,” these techniques usually suffer from a restricted field of view. Here, we demonstrate that diffraction-limited imaging beyond the optical memory-effect can be robustly achieved by combining acousto-optic spatial-gating with state-of-the-art matrix-based imaging techniques. In particular, we show that this can be achieved by computational processing of scattered light fields captured under scanned acousto-optic modulation. The approach can be directly utilized whenever the ultrasound focus size is of the order of the memory-effect range, independently of the scattering angle.
APL PhotonicsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
10.30
自引率
3.60%
发文量
107
审稿时长
19 weeks
期刊介绍:
APL Photonics is the new dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science.