Sherpa:开源 Python 拟合软件包

Aneta Siemiginowska, Douglas Burke, Hans Moritz Günther, Nicholas P. Lee, Warren McLaughlin, David A. Principe, Harlan Cheer, Antonella Fruscione, Omar Laurino, Jonathan McDowell, Marie Terrell
{"title":"Sherpa:开源 Python 拟合软件包","authors":"Aneta Siemiginowska, Douglas Burke, Hans Moritz Günther, Nicholas P. Lee, Warren McLaughlin, David A. Principe, Harlan Cheer, Antonella Fruscione, Omar Laurino, Jonathan McDowell, Marie Terrell","doi":"arxiv-2409.10400","DOIUrl":null,"url":null,"abstract":"We present an overview of Sherpa, an open source Python project, and discuss\nits development history, broad design concepts and capabilities. Sherpa\ncontains powerful tools for combining parametric models into complex\nexpressions that can be fit to data using a variety of statistics and\noptimization methods. It is easily extensible to include user-defined models,\nstatistics, and optimization methods. It provides a high-level User Interface\nfor interactive data-analysis, such as within a Jupyter notebook, and it can\nalso be used as a library component, providing fitting and modeling\ncapabilities to an application. We include a few examples of Sherpa\napplications to multiwavelength astronomical data. The code is available\nGitHub: https://github.com/sherpa/sherpa","PeriodicalId":501163,"journal":{"name":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sherpa: An Open Source Python Fitting Package\",\"authors\":\"Aneta Siemiginowska, Douglas Burke, Hans Moritz Günther, Nicholas P. Lee, Warren McLaughlin, David A. Principe, Harlan Cheer, Antonella Fruscione, Omar Laurino, Jonathan McDowell, Marie Terrell\",\"doi\":\"arxiv-2409.10400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an overview of Sherpa, an open source Python project, and discuss\\nits development history, broad design concepts and capabilities. Sherpa\\ncontains powerful tools for combining parametric models into complex\\nexpressions that can be fit to data using a variety of statistics and\\noptimization methods. It is easily extensible to include user-defined models,\\nstatistics, and optimization methods. It provides a high-level User Interface\\nfor interactive data-analysis, such as within a Jupyter notebook, and it can\\nalso be used as a library component, providing fitting and modeling\\ncapabilities to an application. We include a few examples of Sherpa\\napplications to multiwavelength astronomical data. The code is available\\nGitHub: https://github.com/sherpa/sherpa\",\"PeriodicalId\":501163,\"journal\":{\"name\":\"arXiv - PHYS - Instrumentation and Methods for Astrophysics\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Instrumentation and Methods for Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将概述开源 Python 项目 Sherpa,并讨论其开发历史、广泛的设计理念和功能。Sherpa 拥有强大的工具,可将参数模型组合成复杂的表达式,并使用各种统计和优化方法对数据进行拟合。它易于扩展,可包含用户定义的模型、统计和优化方法。它为交互式数据分析(如在 Jupyter 笔记本中)提供了高级用户界面,还可以作为库组件使用,为应用程序提供拟合和建模功能。我们列举了几个 Sherpa 应用于多波长天文数据的例子。代码可在 GitHub 上获取:https://github.com/sherpa/sherpa
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sherpa: An Open Source Python Fitting Package
We present an overview of Sherpa, an open source Python project, and discuss its development history, broad design concepts and capabilities. Sherpa contains powerful tools for combining parametric models into complex expressions that can be fit to data using a variety of statistics and optimization methods. It is easily extensible to include user-defined models, statistics, and optimization methods. It provides a high-level User Interface for interactive data-analysis, such as within a Jupyter notebook, and it can also be used as a library component, providing fitting and modeling capabilities to an application. We include a few examples of Sherpa applications to multiwavelength astronomical data. The code is available GitHub: https://github.com/sherpa/sherpa
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bright unintended electromagnetic radiation from second-generation Starlink satellites Likelihood reconstruction of radio signals of neutrinos and cosmic rays An evaluation of source-blending impact on the calibration of SKA EoR experiments WALLABY Pilot Survey: HI source-finding with a machine learning framework Black Hole Accretion is all about Sub-Keplerian Flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1