利用归一化流量了解后投影效应

Marco Raveri, Cyrille Doux, Shivam Pandey
{"title":"利用归一化流量了解后投影效应","authors":"Marco Raveri, Cyrille Doux, Shivam Pandey","doi":"arxiv-2409.09101","DOIUrl":null,"url":null,"abstract":"Many modern applications of Bayesian inference, such as in cosmology, are\nbased on complicated forward models with high-dimensional parameter spaces.\nThis considerably limits the sampling of posterior distributions conditioned on\nobserved data. In turn, this reduces the interpretability of posteriors to\ntheir one- and two-dimensional marginal distributions, when more information is\navailable in the full dimensional distributions. We show how to learn smooth\nand differentiable representations of posterior distributions from their\nsamples using normalizing flows, which we train with an added evidence error\nloss term, to improve accuracy in multiple ways. Motivated by problems from\ncosmology, we implement a robust method to obtain one and two-dimensional\nposterior profiles. These are obtained by optimizing, instead of integrating,\nover other parameters, and are thus less prone than marginals to so-called\nprojection effects. We also demonstrate how this representation provides an\naccurate estimator of the Bayesian evidence, with log error at the 0.2 level,\nallowing accurate model comparison. We test our method on multi-modal mixtures\nof Gaussians up to dimension 32 before applying it to simulated cosmology\nexamples. Our code is publicly available at\nhttps://github.com/mraveri/tensiometer.","PeriodicalId":501163,"journal":{"name":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding posterior projection effects with normalizing flows\",\"authors\":\"Marco Raveri, Cyrille Doux, Shivam Pandey\",\"doi\":\"arxiv-2409.09101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many modern applications of Bayesian inference, such as in cosmology, are\\nbased on complicated forward models with high-dimensional parameter spaces.\\nThis considerably limits the sampling of posterior distributions conditioned on\\nobserved data. In turn, this reduces the interpretability of posteriors to\\ntheir one- and two-dimensional marginal distributions, when more information is\\navailable in the full dimensional distributions. We show how to learn smooth\\nand differentiable representations of posterior distributions from their\\nsamples using normalizing flows, which we train with an added evidence error\\nloss term, to improve accuracy in multiple ways. Motivated by problems from\\ncosmology, we implement a robust method to obtain one and two-dimensional\\nposterior profiles. These are obtained by optimizing, instead of integrating,\\nover other parameters, and are thus less prone than marginals to so-called\\nprojection effects. We also demonstrate how this representation provides an\\naccurate estimator of the Bayesian evidence, with log error at the 0.2 level,\\nallowing accurate model comparison. We test our method on multi-modal mixtures\\nof Gaussians up to dimension 32 before applying it to simulated cosmology\\nexamples. Our code is publicly available at\\nhttps://github.com/mraveri/tensiometer.\",\"PeriodicalId\":501163,\"journal\":{\"name\":\"arXiv - PHYS - Instrumentation and Methods for Astrophysics\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Instrumentation and Methods for Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

贝叶斯推理的许多现代应用,如宇宙学,都基于具有高维参数空间的复杂前向模型。这大大限制了以观测数据为条件的后验分布采样,反过来又降低了后验分布对其一维和二维边际分布的可解释性,而在全维分布中可以获得更多信息。我们展示了如何利用归一化流从样本中学习平滑和可微分的后验分布表示。受宇宙学问题的启发,我们实施了一种稳健的方法来获得一维和二维后验分布。这些数据是通过对其他参数进行优化而不是积分得到的,因此比边际数据更不易受到所谓投影效应的影响。我们还演示了这种表示法如何提供贝叶斯证据的精确估计,其对数误差在 0.2 水平,从而可以进行精确的模型比较。我们在维度高达 32 的多模态高斯混合物上测试了我们的方法,然后将其应用于模拟宇宙学示例。我们的代码可在https://github.com/mraveri/tensiometer。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding posterior projection effects with normalizing flows
Many modern applications of Bayesian inference, such as in cosmology, are based on complicated forward models with high-dimensional parameter spaces. This considerably limits the sampling of posterior distributions conditioned on observed data. In turn, this reduces the interpretability of posteriors to their one- and two-dimensional marginal distributions, when more information is available in the full dimensional distributions. We show how to learn smooth and differentiable representations of posterior distributions from their samples using normalizing flows, which we train with an added evidence error loss term, to improve accuracy in multiple ways. Motivated by problems from cosmology, we implement a robust method to obtain one and two-dimensional posterior profiles. These are obtained by optimizing, instead of integrating, over other parameters, and are thus less prone than marginals to so-called projection effects. We also demonstrate how this representation provides an accurate estimator of the Bayesian evidence, with log error at the 0.2 level, allowing accurate model comparison. We test our method on multi-modal mixtures of Gaussians up to dimension 32 before applying it to simulated cosmology examples. Our code is publicly available at https://github.com/mraveri/tensiometer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bright unintended electromagnetic radiation from second-generation Starlink satellites Likelihood reconstruction of radio signals of neutrinos and cosmic rays An evaluation of source-blending impact on the calibration of SKA EoR experiments WALLABY Pilot Survey: HI source-finding with a machine learning framework Black Hole Accretion is all about Sub-Keplerian Flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1