非局部扩散问题引起的块状结构密集系统的快速代数多网格计算

IF 1.4 2区 数学 Q1 MATHEMATICS Calcolo Pub Date : 2024-09-13 DOI:10.1007/s10092-024-00612-1
Minghua Chen, Rongjun Cao, Stefano Serra-Capizzano
{"title":"非局部扩散问题引起的块状结构密集系统的快速代数多网格计算","authors":"Minghua Chen, Rongjun Cao, Stefano Serra-Capizzano","doi":"10.1007/s10092-024-00612-1","DOIUrl":null,"url":null,"abstract":"<p>Algebraic multigrid (AMG) is one of the most efficient iterative methods for solving large structured systems of equations. However, how to build/check restriction and prolongation operators in practical AMG methods for nonsymmetric <i>structured</i> systems is still an interesting open question in its full generality. The present paper deals with the block-structured dense and Toeplitz-like-plus-cross systems, including <i>nonsymmetric</i> indefinite and symmetric positive definite (SPD) ones, arising from nonlocal diffusion problems. The simple (traditional) restriction operator and prolongation operator are employed in order to handle such block-structured dense and Toeplitz-like-plus-cross systems, which are convenient and efficient when employing a fast AMG. We provide a detailed proof of the two-grid convergence of the method for the considered SPD structures. The numerical experiments are performed in order to verify the convergence with a computational cost of only <span>\\(\\mathscr {O}(N \\text{ log } N)\\)</span> arithmetic operations, by exploiting the fast Fourier transform, where <i>N</i> is the number of the grid points. To the best of our knowledge, this is the first contribution regarding Toeplitz-like-plus-cross linear systems solved by means of a fast AMG.</p>","PeriodicalId":9522,"journal":{"name":"Calcolo","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast algebraic multigrid for block-structured dense systems arising from nonlocal diffusion problems\",\"authors\":\"Minghua Chen, Rongjun Cao, Stefano Serra-Capizzano\",\"doi\":\"10.1007/s10092-024-00612-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Algebraic multigrid (AMG) is one of the most efficient iterative methods for solving large structured systems of equations. However, how to build/check restriction and prolongation operators in practical AMG methods for nonsymmetric <i>structured</i> systems is still an interesting open question in its full generality. The present paper deals with the block-structured dense and Toeplitz-like-plus-cross systems, including <i>nonsymmetric</i> indefinite and symmetric positive definite (SPD) ones, arising from nonlocal diffusion problems. The simple (traditional) restriction operator and prolongation operator are employed in order to handle such block-structured dense and Toeplitz-like-plus-cross systems, which are convenient and efficient when employing a fast AMG. We provide a detailed proof of the two-grid convergence of the method for the considered SPD structures. The numerical experiments are performed in order to verify the convergence with a computational cost of only <span>\\\\(\\\\mathscr {O}(N \\\\text{ log } N)\\\\)</span> arithmetic operations, by exploiting the fast Fourier transform, where <i>N</i> is the number of the grid points. To the best of our knowledge, this is the first contribution regarding Toeplitz-like-plus-cross linear systems solved by means of a fast AMG.</p>\",\"PeriodicalId\":9522,\"journal\":{\"name\":\"Calcolo\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calcolo\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10092-024-00612-1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calcolo","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10092-024-00612-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

代数多网格(AMG)是求解大型结构方程组最有效的迭代方法之一。然而,如何在非对称结构系统的实用 AMG 方法中建立/检查限制和延长算子,仍然是一个有趣的开放性问题。本文讨论了由非局部扩散问题引起的块结构密集和类托普利兹加交叉系统,包括非对称不定和对称正定(SPD)系统。我们使用简单(传统)的限制算子和延长算子来处理这类块结构密集系统和类托普利兹加交叉系统,在使用快速 AMG 时既方便又高效。我们详细证明了该方法对所考虑的 SPD 结构的双网格收敛性。通过利用快速傅立叶变换(其中 N 为网格点数),我们进行了数值实验,以验证该方法的收敛性,计算成本仅为 \(\mathscr {O}(N \text{ log } N)\) 算术运算。据我们所知,这是第一个通过快速 AMG 解决类似托普利兹加交叉线性系统的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast algebraic multigrid for block-structured dense systems arising from nonlocal diffusion problems

Algebraic multigrid (AMG) is one of the most efficient iterative methods for solving large structured systems of equations. However, how to build/check restriction and prolongation operators in practical AMG methods for nonsymmetric structured systems is still an interesting open question in its full generality. The present paper deals with the block-structured dense and Toeplitz-like-plus-cross systems, including nonsymmetric indefinite and symmetric positive definite (SPD) ones, arising from nonlocal diffusion problems. The simple (traditional) restriction operator and prolongation operator are employed in order to handle such block-structured dense and Toeplitz-like-plus-cross systems, which are convenient and efficient when employing a fast AMG. We provide a detailed proof of the two-grid convergence of the method for the considered SPD structures. The numerical experiments are performed in order to verify the convergence with a computational cost of only \(\mathscr {O}(N \text{ log } N)\) arithmetic operations, by exploiting the fast Fourier transform, where N is the number of the grid points. To the best of our knowledge, this is the first contribution regarding Toeplitz-like-plus-cross linear systems solved by means of a fast AMG.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Calcolo
Calcolo 数学-数学
CiteScore
2.40
自引率
11.80%
发文量
36
审稿时长
>12 weeks
期刊介绍: Calcolo is a quarterly of the Italian National Research Council, under the direction of the Institute for Informatics and Telematics in Pisa. Calcolo publishes original contributions in English on Numerical Analysis and its Applications, and on the Theory of Computation. The main focus of the journal is on Numerical Linear Algebra, Approximation Theory and its Applications, Numerical Solution of Differential and Integral Equations, Computational Complexity, Algorithmics, Mathematical Aspects of Computer Science, Optimization Theory. Expository papers will also appear from time to time as an introduction to emerging topics in one of the above mentioned fields. There will be a "Report" section, with abstracts of PhD Theses, news and reports from conferences and book reviews. All submissions will be carefully refereed.
期刊最新文献
Adaptive finite element approximation of bilinear optimal control problem with fractional Laplacian An explicit two-grid spectral deferred correction method for nonlinear fractional pantograph differential equations Fast algebraic multigrid for block-structured dense systems arising from nonlocal diffusion problems A modification of the periodic nonuniform sampling involving derivatives with a Gaussian multiplier On the positivity of B-spline Wronskians
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1