NaviQAte:功能引导型网络应用程序导航

Mobina Shahbandeh, Parsa Alian, Noor Nashid, Ali Mesbah
{"title":"NaviQAte:功能引导型网络应用程序导航","authors":"Mobina Shahbandeh, Parsa Alian, Noor Nashid, Ali Mesbah","doi":"arxiv-2409.10741","DOIUrl":null,"url":null,"abstract":"End-to-end web testing is challenging due to the need to explore diverse web\napplication functionalities. Current state-of-the-art methods, such as\nWebCanvas, are not designed for broad functionality exploration; they rely on\nspecific, detailed task descriptions, limiting their adaptability in dynamic\nweb environments. We introduce NaviQAte, which frames web application\nexploration as a question-and-answer task, generating action sequences for\nfunctionalities without requiring detailed parameters. Our three-phase approach\nutilizes advanced large language models like GPT-4o for complex decision-making\nand cost-effective models, such as GPT-4o mini, for simpler tasks. NaviQAte\nfocuses on functionality-guided web application navigation, integrating\nmulti-modal inputs such as text and images to enhance contextual understanding.\nEvaluations on the Mind2Web-Live and Mind2Web-Live-Abstracted datasets show\nthat NaviQAte achieves a 44.23% success rate in user task navigation and a\n38.46% success rate in functionality navigation, representing a 15% and 33%\nimprovement over WebCanvas. These results underscore the effectiveness of our\napproach in advancing automated web application testing.","PeriodicalId":501278,"journal":{"name":"arXiv - CS - Software Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NaviQAte: Functionality-Guided Web Application Navigation\",\"authors\":\"Mobina Shahbandeh, Parsa Alian, Noor Nashid, Ali Mesbah\",\"doi\":\"arxiv-2409.10741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"End-to-end web testing is challenging due to the need to explore diverse web\\napplication functionalities. Current state-of-the-art methods, such as\\nWebCanvas, are not designed for broad functionality exploration; they rely on\\nspecific, detailed task descriptions, limiting their adaptability in dynamic\\nweb environments. We introduce NaviQAte, which frames web application\\nexploration as a question-and-answer task, generating action sequences for\\nfunctionalities without requiring detailed parameters. Our three-phase approach\\nutilizes advanced large language models like GPT-4o for complex decision-making\\nand cost-effective models, such as GPT-4o mini, for simpler tasks. NaviQAte\\nfocuses on functionality-guided web application navigation, integrating\\nmulti-modal inputs such as text and images to enhance contextual understanding.\\nEvaluations on the Mind2Web-Live and Mind2Web-Live-Abstracted datasets show\\nthat NaviQAte achieves a 44.23% success rate in user task navigation and a\\n38.46% success rate in functionality navigation, representing a 15% and 33%\\nimprovement over WebCanvas. These results underscore the effectiveness of our\\napproach in advancing automated web application testing.\",\"PeriodicalId\":501278,\"journal\":{\"name\":\"arXiv - CS - Software Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10741\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于需要探索各种网络应用程序的功能,端到端网络测试具有挑战性。目前最先进的方法,如 WebCanvas,并不是为广泛的功能探索而设计的;它们依赖于具体、详细的任务描述,这限制了它们在动态网络环境中的适应性。我们介绍的 NaviQAte 将网络应用程序探索视为问答任务,无需详细参数即可生成功能的操作序列。我们的三阶段方法利用先进的大型语言模型(如用于复杂决策的 GPT-4o 模型)和经济高效的模型(如用于简单任务的 GPT-4o mini 模型)。在 Mind2Web-Live 和 Mind2Web-Live-Abstracted 数据集上的评估表明,NaviQAte 在用户任务导航方面的成功率为 44.23%,在功能导航方面的成功率为 38.46%,分别比 WebCanvas 提高了 15%和 33%。这些结果证明了我们的方法在推进自动化网络应用程序测试方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NaviQAte: Functionality-Guided Web Application Navigation
End-to-end web testing is challenging due to the need to explore diverse web application functionalities. Current state-of-the-art methods, such as WebCanvas, are not designed for broad functionality exploration; they rely on specific, detailed task descriptions, limiting their adaptability in dynamic web environments. We introduce NaviQAte, which frames web application exploration as a question-and-answer task, generating action sequences for functionalities without requiring detailed parameters. Our three-phase approach utilizes advanced large language models like GPT-4o for complex decision-making and cost-effective models, such as GPT-4o mini, for simpler tasks. NaviQAte focuses on functionality-guided web application navigation, integrating multi-modal inputs such as text and images to enhance contextual understanding. Evaluations on the Mind2Web-Live and Mind2Web-Live-Abstracted datasets show that NaviQAte achieves a 44.23% success rate in user task navigation and a 38.46% success rate in functionality navigation, representing a 15% and 33% improvement over WebCanvas. These results underscore the effectiveness of our approach in advancing automated web application testing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Promise and Peril of Collaborative Code Generation Models: Balancing Effectiveness and Memorization Shannon Entropy is better Feature than Category and Sentiment in User Feedback Processing Motivations, Challenges, Best Practices, and Benefits for Bots and Conversational Agents in Software Engineering: A Multivocal Literature Review A Taxonomy of Self-Admitted Technical Debt in Deep Learning Systems Investigating team maturity in an agile automotive reorganization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1