ContractTinker:为真实世界智能合约提供 LLM 驱动的漏洞修复功能

Che Wang, Jiashuo Zhang, Jianbo Gao, Libin Xia, Zhi Guan, Zhong Chen
{"title":"ContractTinker:为真实世界智能合约提供 LLM 驱动的漏洞修复功能","authors":"Che Wang, Jiashuo Zhang, Jianbo Gao, Libin Xia, Zhi Guan, Zhong Chen","doi":"arxiv-2409.09661","DOIUrl":null,"url":null,"abstract":"Smart contracts are susceptible to being exploited by attackers, especially\nwhen facing real-world vulnerabilities. To mitigate this risk, developers often\nrely on third-party audit services to identify potential vulnerabilities before\nproject deployment. Nevertheless, repairing the identified vulnerabilities is\nstill complex and labor-intensive, particularly for developers lacking security\nexpertise. Moreover, existing pattern-based repair tools mostly fail to address\nreal-world vulnerabilities due to their lack of high-level semantic\nunderstanding. To fill this gap, we propose ContractTinker, a Large Language\nModels (LLMs)-empowered tool for real-world vulnerability repair. The key\ninsight is our adoption of the Chain-of-Thought approach to break down the\nentire generation task into sub-tasks. Additionally, to reduce hallucination,\nwe integrate program static analysis to guide the LLM. We evaluate\nContractTinker on 48 high-risk vulnerabilities. The experimental results show\nthat among the patches generated by ContractTinker, 23 (48%) are valid patches\nthat fix the vulnerabilities, while 10 (21%) require only minor modifications.\nA video of ContractTinker is available at https://youtu.be/HWFVi-YHcPE.","PeriodicalId":501278,"journal":{"name":"arXiv - CS - Software Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ContractTinker: LLM-Empowered Vulnerability Repair for Real-World Smart Contracts\",\"authors\":\"Che Wang, Jiashuo Zhang, Jianbo Gao, Libin Xia, Zhi Guan, Zhong Chen\",\"doi\":\"arxiv-2409.09661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smart contracts are susceptible to being exploited by attackers, especially\\nwhen facing real-world vulnerabilities. To mitigate this risk, developers often\\nrely on third-party audit services to identify potential vulnerabilities before\\nproject deployment. Nevertheless, repairing the identified vulnerabilities is\\nstill complex and labor-intensive, particularly for developers lacking security\\nexpertise. Moreover, existing pattern-based repair tools mostly fail to address\\nreal-world vulnerabilities due to their lack of high-level semantic\\nunderstanding. To fill this gap, we propose ContractTinker, a Large Language\\nModels (LLMs)-empowered tool for real-world vulnerability repair. The key\\ninsight is our adoption of the Chain-of-Thought approach to break down the\\nentire generation task into sub-tasks. Additionally, to reduce hallucination,\\nwe integrate program static analysis to guide the LLM. We evaluate\\nContractTinker on 48 high-risk vulnerabilities. The experimental results show\\nthat among the patches generated by ContractTinker, 23 (48%) are valid patches\\nthat fix the vulnerabilities, while 10 (21%) require only minor modifications.\\nA video of ContractTinker is available at https://youtu.be/HWFVi-YHcPE.\",\"PeriodicalId\":501278,\"journal\":{\"name\":\"arXiv - CS - Software Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

智能合约很容易被攻击者利用,尤其是在面对真实世界的漏洞时。为了降低这种风险,开发人员通常依靠第三方审计服务在项目部署前找出潜在漏洞。然而,修复识别出的漏洞仍然复杂且耗费人力,对于缺乏安全专业知识的开发人员来说尤其如此。此外,现有的基于模式的修复工具由于缺乏对高层语义的理解,大多无法解决现实世界中的漏洞问题。为了填补这一空白,我们提出了 ContractTinker,这是一种大型语言模型(LLMs)驱动的真实世界漏洞修复工具。其关键之处在于我们采用了 "思维链"(Chain-of-Thought)方法,将整个生成任务分解为多个子任务。此外,为了减少幻觉,我们还集成了程序静态分析来指导 LLM。我们在 48 个高危漏洞上对 ContractTinker 进行了评估。实验结果表明,在 ContractTinker 生成的补丁中,有 23 个(48%)是修复漏洞的有效补丁,而 10 个(21%)只需稍作修改即可。ContractTinker 的视频可在 https://youtu.be/HWFVi-YHcPE 上观看。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ContractTinker: LLM-Empowered Vulnerability Repair for Real-World Smart Contracts
Smart contracts are susceptible to being exploited by attackers, especially when facing real-world vulnerabilities. To mitigate this risk, developers often rely on third-party audit services to identify potential vulnerabilities before project deployment. Nevertheless, repairing the identified vulnerabilities is still complex and labor-intensive, particularly for developers lacking security expertise. Moreover, existing pattern-based repair tools mostly fail to address real-world vulnerabilities due to their lack of high-level semantic understanding. To fill this gap, we propose ContractTinker, a Large Language Models (LLMs)-empowered tool for real-world vulnerability repair. The key insight is our adoption of the Chain-of-Thought approach to break down the entire generation task into sub-tasks. Additionally, to reduce hallucination, we integrate program static analysis to guide the LLM. We evaluate ContractTinker on 48 high-risk vulnerabilities. The experimental results show that among the patches generated by ContractTinker, 23 (48%) are valid patches that fix the vulnerabilities, while 10 (21%) require only minor modifications. A video of ContractTinker is available at https://youtu.be/HWFVi-YHcPE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Promise and Peril of Collaborative Code Generation Models: Balancing Effectiveness and Memorization Shannon Entropy is better Feature than Category and Sentiment in User Feedback Processing Motivations, Challenges, Best Practices, and Benefits for Bots and Conversational Agents in Software Engineering: A Multivocal Literature Review A Taxonomy of Self-Admitted Technical Debt in Deep Learning Systems Investigating team maturity in an agile automotive reorganization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1