学习不稳定的连续时间随机线性控制系统

Reza Sadeghi Hafshejani, Mohamad Kazem Shirani Fradonbeh
{"title":"学习不稳定的连续时间随机线性控制系统","authors":"Reza Sadeghi Hafshejani, Mohamad Kazem Shirani Fradonbeh","doi":"arxiv-2409.11327","DOIUrl":null,"url":null,"abstract":"We study the problem of system identification for stochastic continuous-time\ndynamics, based on a single finite-length state trajectory. We present a method\nfor estimating the possibly unstable open-loop matrix by employing properly\nrandomized control inputs. Then, we establish theoretical performance\nguarantees showing that the estimation error decays with trajectory length, a\nmeasure of excitability, and the signal-to-noise ratio, while it grows with\ndimension. Numerical illustrations that showcase the rates of learning the\ndynamics, will be provided as well. To perform the theoretical analysis, we\ndevelop new technical tools that are of independent interest. That includes\nnon-asymptotic stochastic bounds for highly non-stationary martingales and\ngeneralized laws of iterated logarithms, among others.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"119 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Unstable Continuous-Time Stochastic Linear Control Systems\",\"authors\":\"Reza Sadeghi Hafshejani, Mohamad Kazem Shirani Fradonbeh\",\"doi\":\"arxiv-2409.11327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of system identification for stochastic continuous-time\\ndynamics, based on a single finite-length state trajectory. We present a method\\nfor estimating the possibly unstable open-loop matrix by employing properly\\nrandomized control inputs. Then, we establish theoretical performance\\nguarantees showing that the estimation error decays with trajectory length, a\\nmeasure of excitability, and the signal-to-noise ratio, while it grows with\\ndimension. Numerical illustrations that showcase the rates of learning the\\ndynamics, will be provided as well. To perform the theoretical analysis, we\\ndevelop new technical tools that are of independent interest. That includes\\nnon-asymptotic stochastic bounds for highly non-stationary martingales and\\ngeneralized laws of iterated logarithms, among others.\",\"PeriodicalId\":501340,\"journal\":{\"name\":\"arXiv - STAT - Machine Learning\",\"volume\":\"119 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了基于单个有限长状态轨迹的随机连续时间动力学的系统识别问题。我们提出了一种通过采用适当的随机控制输入来估计可能不稳定的开环矩阵的方法。然后,我们建立了理论性能保证,表明估计误差随轨迹长度、兴奋性度量和信噪比的增加而减小,同时它的增长是渐进的。此外,我们还将提供数字图解,展示学习动力学的速度。为了进行理论分析,我们开发了具有独立意义的新技术工具。其中包括高度非稳态马氏随机边界和迭代对数的广义法则等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning Unstable Continuous-Time Stochastic Linear Control Systems
We study the problem of system identification for stochastic continuous-time dynamics, based on a single finite-length state trajectory. We present a method for estimating the possibly unstable open-loop matrix by employing properly randomized control inputs. Then, we establish theoretical performance guarantees showing that the estimation error decays with trajectory length, a measure of excitability, and the signal-to-noise ratio, while it grows with dimension. Numerical illustrations that showcase the rates of learning the dynamics, will be provided as well. To perform the theoretical analysis, we develop new technical tools that are of independent interest. That includes non-asymptotic stochastic bounds for highly non-stationary martingales and generalized laws of iterated logarithms, among others.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fitting Multilevel Factor Models Cartan moving frames and the data manifolds Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks Recurrent Interpolants for Probabilistic Time Series Prediction PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1