高维纵向数据的潜在混合效应模型

Priscilla Ong, Manuel Haußmann, Otto Lönnroth, Harri Lähdesmäki
{"title":"高维纵向数据的潜在混合效应模型","authors":"Priscilla Ong, Manuel Haußmann, Otto Lönnroth, Harri Lähdesmäki","doi":"arxiv-2409.11008","DOIUrl":null,"url":null,"abstract":"Modelling longitudinal data is an important yet challenging task. These\ndatasets can be high-dimensional, contain non-linear effects and time-varying\ncovariates. Gaussian process (GP) prior-based variational autoencoders (VAEs)\nhave emerged as a promising approach due to their ability to model time-series\ndata. However, they are costly to train and struggle to fully exploit the rich\ncovariates characteristic of longitudinal data, making them difficult for\npractitioners to use effectively. In this work, we leverage linear mixed models\n(LMMs) and amortized variational inference to provide conditional priors for\nVAEs, and propose LMM-VAE, a scalable, interpretable and identifiable model. We\nhighlight theoretical connections between it and GP-based techniques, providing\na unified framework for this class of methods. Our proposal performs\ncompetitively compared to existing approaches across simulated and real-world\ndatasets.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Latent mixed-effect models for high-dimensional longitudinal data\",\"authors\":\"Priscilla Ong, Manuel Haußmann, Otto Lönnroth, Harri Lähdesmäki\",\"doi\":\"arxiv-2409.11008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modelling longitudinal data is an important yet challenging task. These\\ndatasets can be high-dimensional, contain non-linear effects and time-varying\\ncovariates. Gaussian process (GP) prior-based variational autoencoders (VAEs)\\nhave emerged as a promising approach due to their ability to model time-series\\ndata. However, they are costly to train and struggle to fully exploit the rich\\ncovariates characteristic of longitudinal data, making them difficult for\\npractitioners to use effectively. In this work, we leverage linear mixed models\\n(LMMs) and amortized variational inference to provide conditional priors for\\nVAEs, and propose LMM-VAE, a scalable, interpretable and identifiable model. We\\nhighlight theoretical connections between it and GP-based techniques, providing\\na unified framework for this class of methods. Our proposal performs\\ncompetitively compared to existing approaches across simulated and real-world\\ndatasets.\",\"PeriodicalId\":501340,\"journal\":{\"name\":\"arXiv - STAT - Machine Learning\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

建立纵向数据模型是一项重要而又具有挑战性的任务。这些数据集可能是高维数据,包含非线性效应和时变变量。基于高斯过程(GP)先验的变异自动编码器(VAE)因其能够对时间序列数据建模而成为一种很有前途的方法。然而,它们的训练成本很高,而且难以充分利用纵向数据所特有的丰富变量,因此实践者很难有效地使用它们。在这项工作中,我们利用线性混合模型(LMMs)和摊销变异推理(amortized variational inference)为VAEs提供条件先验,并提出了LMM-VAE--一种可扩展、可解释和可识别的模型。我们强调了它与基于 GP 的技术之间的理论联系,为这类方法提供了一个统一的框架。与现有方法相比,我们的建议在模拟和真实世界数据集上的表现极具竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Latent mixed-effect models for high-dimensional longitudinal data
Modelling longitudinal data is an important yet challenging task. These datasets can be high-dimensional, contain non-linear effects and time-varying covariates. Gaussian process (GP) prior-based variational autoencoders (VAEs) have emerged as a promising approach due to their ability to model time-series data. However, they are costly to train and struggle to fully exploit the rich covariates characteristic of longitudinal data, making them difficult for practitioners to use effectively. In this work, we leverage linear mixed models (LMMs) and amortized variational inference to provide conditional priors for VAEs, and propose LMM-VAE, a scalable, interpretable and identifiable model. We highlight theoretical connections between it and GP-based techniques, providing a unified framework for this class of methods. Our proposal performs competitively compared to existing approaches across simulated and real-world datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fitting Multilevel Factor Models Cartan moving frames and the data manifolds Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks Recurrent Interpolants for Probabilistic Time Series Prediction PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1