通过部分瓦瑟斯坦对抗网络进行部分分布匹配

Zi-Ming Wang, Nan Xue, Ling Lei, Rebecka Jörnsten, Gui-Song Xia
{"title":"通过部分瓦瑟斯坦对抗网络进行部分分布匹配","authors":"Zi-Ming Wang, Nan Xue, Ling Lei, Rebecka Jörnsten, Gui-Song Xia","doi":"arxiv-2409.10499","DOIUrl":null,"url":null,"abstract":"This paper studies the problem of distribution matching (DM), which is a\nfundamental machine learning problem seeking to robustly align two probability\ndistributions. Our approach is established on a relaxed formulation, called\npartial distribution matching (PDM), which seeks to match a fraction of the\ndistributions instead of matching them completely. We theoretically derive the\nKantorovich-Rubinstein duality for the partial Wasserstain-1 (PW) discrepancy,\nand develop a partial Wasserstein adversarial network (PWAN) that efficiently\napproximates the PW discrepancy based on this dual form. Partial matching can\nthen be achieved by optimizing the network using gradient descent. Two\npractical tasks, point set registration and partial domain adaptation are\ninvestigated, where the goals are to partially match distributions in 3D space\nand high-dimensional feature space respectively. The experiment results confirm\nthat the proposed PWAN effectively produces highly robust matching results,\nperforming better or on par with the state-of-the-art methods.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partial Distribution Matching via Partial Wasserstein Adversarial Networks\",\"authors\":\"Zi-Ming Wang, Nan Xue, Ling Lei, Rebecka Jörnsten, Gui-Song Xia\",\"doi\":\"arxiv-2409.10499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the problem of distribution matching (DM), which is a\\nfundamental machine learning problem seeking to robustly align two probability\\ndistributions. Our approach is established on a relaxed formulation, called\\npartial distribution matching (PDM), which seeks to match a fraction of the\\ndistributions instead of matching them completely. We theoretically derive the\\nKantorovich-Rubinstein duality for the partial Wasserstain-1 (PW) discrepancy,\\nand develop a partial Wasserstein adversarial network (PWAN) that efficiently\\napproximates the PW discrepancy based on this dual form. Partial matching can\\nthen be achieved by optimizing the network using gradient descent. Two\\npractical tasks, point set registration and partial domain adaptation are\\ninvestigated, where the goals are to partially match distributions in 3D space\\nand high-dimensional feature space respectively. The experiment results confirm\\nthat the proposed PWAN effectively produces highly robust matching results,\\nperforming better or on par with the state-of-the-art methods.\",\"PeriodicalId\":501340,\"journal\":{\"name\":\"arXiv - STAT - Machine Learning\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究的是分布匹配(DM)问题,这是一个基本的机器学习问题,旨在稳健地匹配两个概率分布。我们的方法建立在一种宽松的表述之上,称为部分分布匹配(PDM),它寻求匹配部分分布,而不是完全匹配。我们从理论上推导出了部分 Wasserstain-1(PW)差异的康托洛维奇-鲁宾斯坦对偶形式,并开发了一种部分 Wasserstein 对抗网络 (PWAN),它能基于这种对偶形式有效地近似 PW 差异。通过使用梯度下降法优化网络,可以实现部分匹配。研究了点集注册和部分域适应这两项实际任务,其目标分别是部分匹配三维空间和高维特征空间中的分布。实验结果证实,所提出的 PWAN 能有效地产生高鲁棒性的匹配结果,其性能优于或与最先进的方法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Partial Distribution Matching via Partial Wasserstein Adversarial Networks
This paper studies the problem of distribution matching (DM), which is a fundamental machine learning problem seeking to robustly align two probability distributions. Our approach is established on a relaxed formulation, called partial distribution matching (PDM), which seeks to match a fraction of the distributions instead of matching them completely. We theoretically derive the Kantorovich-Rubinstein duality for the partial Wasserstain-1 (PW) discrepancy, and develop a partial Wasserstein adversarial network (PWAN) that efficiently approximates the PW discrepancy based on this dual form. Partial matching can then be achieved by optimizing the network using gradient descent. Two practical tasks, point set registration and partial domain adaptation are investigated, where the goals are to partially match distributions in 3D space and high-dimensional feature space respectively. The experiment results confirm that the proposed PWAN effectively produces highly robust matching results, performing better or on par with the state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fitting Multilevel Factor Models Cartan moving frames and the data manifolds Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks Recurrent Interpolants for Probabilistic Time Series Prediction PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1