利用稀疏傅立叶域学习扩展连续核

Clayton Harper, Luke Wood, Peter Gerstoft, Eric C. Larson
{"title":"利用稀疏傅立叶域学习扩展连续核","authors":"Clayton Harper, Luke Wood, Peter Gerstoft, Eric C. Larson","doi":"arxiv-2409.09875","DOIUrl":null,"url":null,"abstract":"We address three key challenges in learning continuous kernel\nrepresentations: computational efficiency, parameter efficiency, and spectral\nbias. Continuous kernels have shown significant potential, but their practical\nadoption is often limited by high computational and memory demands.\nAdditionally, these methods are prone to spectral bias, which impedes their\nability to capture high-frequency details. To overcome these limitations, we\npropose a novel approach that leverages sparse learning in the Fourier domain.\nOur method enables the efficient scaling of continuous kernels, drastically\nreduces computational and memory requirements, and mitigates spectral bias by\nexploiting the Gibbs phenomenon.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scaling Continuous Kernels with Sparse Fourier Domain Learning\",\"authors\":\"Clayton Harper, Luke Wood, Peter Gerstoft, Eric C. Larson\",\"doi\":\"arxiv-2409.09875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address three key challenges in learning continuous kernel\\nrepresentations: computational efficiency, parameter efficiency, and spectral\\nbias. Continuous kernels have shown significant potential, but their practical\\nadoption is often limited by high computational and memory demands.\\nAdditionally, these methods are prone to spectral bias, which impedes their\\nability to capture high-frequency details. To overcome these limitations, we\\npropose a novel approach that leverages sparse learning in the Fourier domain.\\nOur method enables the efficient scaling of continuous kernels, drastically\\nreduces computational and memory requirements, and mitigates spectral bias by\\nexploiting the Gibbs phenomenon.\",\"PeriodicalId\":501340,\"journal\":{\"name\":\"arXiv - STAT - Machine Learning\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们解决了学习连续核表示的三个关键挑战:计算效率、参数效率和频谱偏差。连续内核已显示出巨大的潜力,但其实际应用往往受到高计算量和内存需求的限制。此外,这些方法容易出现频谱偏差,从而影响捕捉高频细节的能力。为了克服这些局限性,我们提出了一种利用傅立叶域稀疏学习的新方法。我们的方法实现了连续核的高效扩展,大大降低了计算和内存需求,并通过利用吉布斯现象减轻了频谱偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scaling Continuous Kernels with Sparse Fourier Domain Learning
We address three key challenges in learning continuous kernel representations: computational efficiency, parameter efficiency, and spectral bias. Continuous kernels have shown significant potential, but their practical adoption is often limited by high computational and memory demands. Additionally, these methods are prone to spectral bias, which impedes their ability to capture high-frequency details. To overcome these limitations, we propose a novel approach that leverages sparse learning in the Fourier domain. Our method enables the efficient scaling of continuous kernels, drastically reduces computational and memory requirements, and mitigates spectral bias by exploiting the Gibbs phenomenon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fitting Multilevel Factor Models Cartan moving frames and the data manifolds Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks Recurrent Interpolants for Probabilistic Time Series Prediction PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1