BEnDEM:基于引导去噪能量匹配的波尔兹曼采样器

RuiKang OuYang, Bo Qiang, José Miguel Hernández-Lobato
{"title":"BEnDEM:基于引导去噪能量匹配的波尔兹曼采样器","authors":"RuiKang OuYang, Bo Qiang, José Miguel Hernández-Lobato","doi":"arxiv-2409.09787","DOIUrl":null,"url":null,"abstract":"Developing an efficient sampler capable of generating independent and\nidentically distributed (IID) samples from a Boltzmann distribution is a\ncrucial challenge in scientific research, e.g. molecular dynamics. In this\nwork, we intend to learn neural samplers given energy functions instead of data\nsampled from the Boltzmann distribution. By learning the energies of the noised\ndata, we propose a diffusion-based sampler, ENERGY-BASED DENOISING ENERGY\nMATCHING, which theoretically has lower variance and more complexity compared\nto related works. Furthermore, a novel bootstrapping technique is applied to\nEnDEM to balance between bias and variance. We evaluate EnDEM and BEnDEM on a\n2-dimensional 40 Gaussian Mixture Model (GMM) and a 4-particle double-welling\npotential (DW-4). The experimental results demonstrate that BEnDEM can achieve\nstate-of-the-art performance while being more robust.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BEnDEM:A Boltzmann Sampler Based on Bootstrapped Denoising Energy Matching\",\"authors\":\"RuiKang OuYang, Bo Qiang, José Miguel Hernández-Lobato\",\"doi\":\"arxiv-2409.09787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing an efficient sampler capable of generating independent and\\nidentically distributed (IID) samples from a Boltzmann distribution is a\\ncrucial challenge in scientific research, e.g. molecular dynamics. In this\\nwork, we intend to learn neural samplers given energy functions instead of data\\nsampled from the Boltzmann distribution. By learning the energies of the noised\\ndata, we propose a diffusion-based sampler, ENERGY-BASED DENOISING ENERGY\\nMATCHING, which theoretically has lower variance and more complexity compared\\nto related works. Furthermore, a novel bootstrapping technique is applied to\\nEnDEM to balance between bias and variance. We evaluate EnDEM and BEnDEM on a\\n2-dimensional 40 Gaussian Mixture Model (GMM) and a 4-particle double-welling\\npotential (DW-4). The experimental results demonstrate that BEnDEM can achieve\\nstate-of-the-art performance while being more robust.\",\"PeriodicalId\":501340,\"journal\":{\"name\":\"arXiv - STAT - Machine Learning\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

开发一种能够从波尔兹曼分布生成独立且相同分布(IID)样本的高效采样器是科学研究(如分子动力学)中的一项重要挑战。在这项工作中,我们打算学习给定能量函数的神经采样器,而不是从玻尔兹曼分布中采样的数据。通过学习噪声数据的能量,我们提出了一种基于扩散的采样器--基于能量的去噪能量匹配(ENERGY-BASED DENOISING ENERGYMATCHING),与相关研究相比,它在理论上具有更低的方差和更高的复杂度。此外,EnDEM 还采用了一种新颖的引导技术来平衡偏差和方差。我们评估了 EnDEM 和 BEnDEM 在二维 40 高斯混合模型(GMM)和四粒子双阱势能(DW-4)上的应用。实验结果表明,BEnDEM 可以达到最先进的性能,同时更加稳健。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BEnDEM:A Boltzmann Sampler Based on Bootstrapped Denoising Energy Matching
Developing an efficient sampler capable of generating independent and identically distributed (IID) samples from a Boltzmann distribution is a crucial challenge in scientific research, e.g. molecular dynamics. In this work, we intend to learn neural samplers given energy functions instead of data sampled from the Boltzmann distribution. By learning the energies of the noised data, we propose a diffusion-based sampler, ENERGY-BASED DENOISING ENERGY MATCHING, which theoretically has lower variance and more complexity compared to related works. Furthermore, a novel bootstrapping technique is applied to EnDEM to balance between bias and variance. We evaluate EnDEM and BEnDEM on a 2-dimensional 40 Gaussian Mixture Model (GMM) and a 4-particle double-welling potential (DW-4). The experimental results demonstrate that BEnDEM can achieve state-of-the-art performance while being more robust.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fitting Multilevel Factor Models Cartan moving frames and the data manifolds Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks Recurrent Interpolants for Probabilistic Time Series Prediction PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1