通过学习动力了解合成映射的简单性偏差

Yi Ren, Danica J. Sutherland
{"title":"通过学习动力了解合成映射的简单性偏差","authors":"Yi Ren, Danica J. Sutherland","doi":"arxiv-2409.09626","DOIUrl":null,"url":null,"abstract":"Obtaining compositional mappings is important for the model to generalize\nwell compositionally. To better understand when and how to encourage the model\nto learn such mappings, we study their uniqueness through different\nperspectives. Specifically, we first show that the compositional mappings are\nthe simplest bijections through the lens of coding length (i.e., an upper bound\nof their Kolmogorov complexity). This property explains why models having such\nmappings can generalize well. We further show that the simplicity bias is\nusually an intrinsic property of neural network training via gradient descent.\nThat partially explains why some models spontaneously generalize well when they\nare trained appropriately.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding Simplicity Bias towards Compositional Mappings via Learning Dynamics\",\"authors\":\"Yi Ren, Danica J. Sutherland\",\"doi\":\"arxiv-2409.09626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Obtaining compositional mappings is important for the model to generalize\\nwell compositionally. To better understand when and how to encourage the model\\nto learn such mappings, we study their uniqueness through different\\nperspectives. Specifically, we first show that the compositional mappings are\\nthe simplest bijections through the lens of coding length (i.e., an upper bound\\nof their Kolmogorov complexity). This property explains why models having such\\nmappings can generalize well. We further show that the simplicity bias is\\nusually an intrinsic property of neural network training via gradient descent.\\nThat partially explains why some models spontaneously generalize well when they\\nare trained appropriately.\",\"PeriodicalId\":501340,\"journal\":{\"name\":\"arXiv - STAT - Machine Learning\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

获得组合映射对于模型的组合泛化非常重要。为了更好地理解何时以及如何鼓励模型学习这种映射,我们从不同的角度研究了它们的唯一性。具体来说,我们首先从编码长度(即其科尔莫哥洛夫复杂度的上限)的角度证明了组合映射是最简单的双射。这一特性解释了为什么具有这种映射的模型可以很好地泛化。我们进一步证明,简单性偏差通常是神经网络通过梯度下降训练的内在属性,这也部分解释了为什么有些模型在经过适当训练后会自发地实现良好泛化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding Simplicity Bias towards Compositional Mappings via Learning Dynamics
Obtaining compositional mappings is important for the model to generalize well compositionally. To better understand when and how to encourage the model to learn such mappings, we study their uniqueness through different perspectives. Specifically, we first show that the compositional mappings are the simplest bijections through the lens of coding length (i.e., an upper bound of their Kolmogorov complexity). This property explains why models having such mappings can generalize well. We further show that the simplicity bias is usually an intrinsic property of neural network training via gradient descent. That partially explains why some models spontaneously generalize well when they are trained appropriately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fitting Multilevel Factor Models Cartan moving frames and the data manifolds Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks Recurrent Interpolants for Probabilistic Time Series Prediction PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1