基于潜在空间分数的扩散模型用于概率多变量时间序列推算

Guojun Liang, Najmeh Abiri, Atiye Sadat Hashemi, Jens Lundström, Stefan Byttner, Prayag Tiwari
{"title":"基于潜在空间分数的扩散模型用于概率多变量时间序列推算","authors":"Guojun Liang, Najmeh Abiri, Atiye Sadat Hashemi, Jens Lundström, Stefan Byttner, Prayag Tiwari","doi":"arxiv-2409.08917","DOIUrl":null,"url":null,"abstract":"Accurate imputation is essential for the reliability and success of\ndownstream tasks. Recently, diffusion models have attracted great attention in\nthis field. However, these models neglect the latent distribution in a\nlower-dimensional space derived from the observed data, which limits the\ngenerative capacity of the diffusion model. Additionally, dealing with the\noriginal missing data without labels becomes particularly problematic. To\naddress these issues, we propose the Latent Space Score-Based Diffusion Model\n(LSSDM) for probabilistic multivariate time series imputation. Observed values\nare projected onto low-dimensional latent space and coarse values of the\nmissing data are reconstructed without knowing their ground truth values by\nthis unsupervised learning approach. Finally, the reconstructed values are fed\ninto a conditional diffusion model to obtain the precise imputed values of the\ntime series. In this way, LSSDM not only possesses the power to identify the\nlatent distribution but also seamlessly integrates the diffusion model to\nobtain the high-fidelity imputed values and assess the uncertainty of the\ndataset. Experimental results demonstrate that LSSDM achieves superior\nimputation performance while also providing a better explanation and\nuncertainty analysis of the imputation mechanism. The website of the code is\n\\textit{https://github.com/gorgen2020/LSSDM\\_imputation}.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Latent Space Score-based Diffusion Model for Probabilistic Multivariate Time Series Imputation\",\"authors\":\"Guojun Liang, Najmeh Abiri, Atiye Sadat Hashemi, Jens Lundström, Stefan Byttner, Prayag Tiwari\",\"doi\":\"arxiv-2409.08917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate imputation is essential for the reliability and success of\\ndownstream tasks. Recently, diffusion models have attracted great attention in\\nthis field. However, these models neglect the latent distribution in a\\nlower-dimensional space derived from the observed data, which limits the\\ngenerative capacity of the diffusion model. Additionally, dealing with the\\noriginal missing data without labels becomes particularly problematic. To\\naddress these issues, we propose the Latent Space Score-Based Diffusion Model\\n(LSSDM) for probabilistic multivariate time series imputation. Observed values\\nare projected onto low-dimensional latent space and coarse values of the\\nmissing data are reconstructed without knowing their ground truth values by\\nthis unsupervised learning approach. Finally, the reconstructed values are fed\\ninto a conditional diffusion model to obtain the precise imputed values of the\\ntime series. In this way, LSSDM not only possesses the power to identify the\\nlatent distribution but also seamlessly integrates the diffusion model to\\nobtain the high-fidelity imputed values and assess the uncertainty of the\\ndataset. Experimental results demonstrate that LSSDM achieves superior\\nimputation performance while also providing a better explanation and\\nuncertainty analysis of the imputation mechanism. The website of the code is\\n\\\\textit{https://github.com/gorgen2020/LSSDM\\\\_imputation}.\",\"PeriodicalId\":501340,\"journal\":{\"name\":\"arXiv - STAT - Machine Learning\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确的估算对下游任务的可靠性和成功至关重要。最近,扩散模型在这一领域引起了极大关注。然而,这些模型忽略了从观测数据中得出的低维空间中的潜在分布,这限制了扩散模型的生成能力。此外,处理没有标签的原始缺失数据也成了特别棘手的问题。为了解决这些问题,我们提出了基于潜空间得分的扩散模型(LSSDM),用于概率多变量时间序列估算。观测值被投射到低维潜在空间上,缺失数据的粗略值在不知道其基本真实值的情况下通过这种无监督学习方法被重建。最后,将重建值输入条件扩散模型,以获得时间序列的精确估算值。这样,LSSDM 不仅具有识别恒定分布的能力,还能无缝集成扩散模型,以获得高保真的估算值,并评估数据集的不确定性。实验结果表明,LSSDM 在实现卓越计算性能的同时,还对估算机制进行了更好的解释和不确定性分析。代码的网址是textit{https://github.com/gorgen2020/LSSDM\_imputation}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Latent Space Score-based Diffusion Model for Probabilistic Multivariate Time Series Imputation
Accurate imputation is essential for the reliability and success of downstream tasks. Recently, diffusion models have attracted great attention in this field. However, these models neglect the latent distribution in a lower-dimensional space derived from the observed data, which limits the generative capacity of the diffusion model. Additionally, dealing with the original missing data without labels becomes particularly problematic. To address these issues, we propose the Latent Space Score-Based Diffusion Model (LSSDM) for probabilistic multivariate time series imputation. Observed values are projected onto low-dimensional latent space and coarse values of the missing data are reconstructed without knowing their ground truth values by this unsupervised learning approach. Finally, the reconstructed values are fed into a conditional diffusion model to obtain the precise imputed values of the time series. In this way, LSSDM not only possesses the power to identify the latent distribution but also seamlessly integrates the diffusion model to obtain the high-fidelity imputed values and assess the uncertainty of the dataset. Experimental results demonstrate that LSSDM achieves superior imputation performance while also providing a better explanation and uncertainty analysis of the imputation mechanism. The website of the code is \textit{https://github.com/gorgen2020/LSSDM\_imputation}.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fitting Multilevel Factor Models Cartan moving frames and the data manifolds Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks Recurrent Interpolants for Probabilistic Time Series Prediction PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1