因果 GNN:网络中因果推理的 GNN 驱动型工具变量方法

Xiaojing Du, Feiyu Yang, Wentao Gao, Xiongren Chen
{"title":"因果 GNN:网络中因果推理的 GNN 驱动型工具变量方法","authors":"Xiaojing Du, Feiyu Yang, Wentao Gao, Xiongren Chen","doi":"arxiv-2409.08544","DOIUrl":null,"url":null,"abstract":"As network data applications continue to expand, causal inference within\nnetworks has garnered increasing attention. However, hidden confounders\ncomplicate the estimation of causal effects. Most methods rely on the strong\nignorability assumption, which presumes the absence of hidden confounders-an\nassumption that is both difficult to validate and often unrealistic in\npractice. To address this issue, we propose CgNN, a novel approach that\nleverages network structure as instrumental variables (IVs), combined with\ngraph neural networks (GNNs) and attention mechanisms, to mitigate hidden\nconfounder bias and improve causal effect estimation. By utilizing network\nstructure as IVs, we reduce confounder bias while preserving the correlation\nwith treatment. Our integration of attention mechanisms enhances robustness and\nimproves the identification of important nodes. Validated on two real-world\ndatasets, our results demonstrate that CgNN effectively mitigates hidden\nconfounder bias and offers a robust GNN-driven IV framework for causal\ninference in complex network data.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Causal GNNs: A GNN-Driven Instrumental Variable Approach for Causal Inference in Networks\",\"authors\":\"Xiaojing Du, Feiyu Yang, Wentao Gao, Xiongren Chen\",\"doi\":\"arxiv-2409.08544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As network data applications continue to expand, causal inference within\\nnetworks has garnered increasing attention. However, hidden confounders\\ncomplicate the estimation of causal effects. Most methods rely on the strong\\nignorability assumption, which presumes the absence of hidden confounders-an\\nassumption that is both difficult to validate and often unrealistic in\\npractice. To address this issue, we propose CgNN, a novel approach that\\nleverages network structure as instrumental variables (IVs), combined with\\ngraph neural networks (GNNs) and attention mechanisms, to mitigate hidden\\nconfounder bias and improve causal effect estimation. By utilizing network\\nstructure as IVs, we reduce confounder bias while preserving the correlation\\nwith treatment. Our integration of attention mechanisms enhances robustness and\\nimproves the identification of important nodes. Validated on two real-world\\ndatasets, our results demonstrate that CgNN effectively mitigates hidden\\nconfounder bias and offers a robust GNN-driven IV framework for causal\\ninference in complex network data.\",\"PeriodicalId\":501340,\"journal\":{\"name\":\"arXiv - STAT - Machine Learning\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着网络数据应用的不断扩大,网络内的因果推断越来越受到关注。然而,隐藏混杂因素使因果效应的估计变得复杂。大多数方法都依赖于强可识别性假设,该假设假定不存在隐藏混杂因素--这种假设既难以验证,在实践中也往往不现实。为了解决这个问题,我们提出了 CgNN,这是一种将网络结构作为工具变量(IVs)的新方法,结合图神经网络(GNNs)和注意力机制,以减轻隐藏混杂因素偏差并改进因果效应估计。通过利用网络结构作为 IVs,我们减少了混杂因素偏差,同时保留了与治疗的相关性。我们对注意力机制的整合增强了稳健性,并改善了重要节点的识别。通过对两个真实世界数据集的验证,我们的结果表明,CgNN 有效地减轻了隐藏的混杂因素偏差,为复杂网络数据的因果推断提供了一个稳健的 GNN 驱动 IV 框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Causal GNNs: A GNN-Driven Instrumental Variable Approach for Causal Inference in Networks
As network data applications continue to expand, causal inference within networks has garnered increasing attention. However, hidden confounders complicate the estimation of causal effects. Most methods rely on the strong ignorability assumption, which presumes the absence of hidden confounders-an assumption that is both difficult to validate and often unrealistic in practice. To address this issue, we propose CgNN, a novel approach that leverages network structure as instrumental variables (IVs), combined with graph neural networks (GNNs) and attention mechanisms, to mitigate hidden confounder bias and improve causal effect estimation. By utilizing network structure as IVs, we reduce confounder bias while preserving the correlation with treatment. Our integration of attention mechanisms enhances robustness and improves the identification of important nodes. Validated on two real-world datasets, our results demonstrate that CgNN effectively mitigates hidden confounder bias and offers a robust GNN-driven IV framework for causal inference in complex network data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fitting Multilevel Factor Models Cartan moving frames and the data manifolds Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks Recurrent Interpolants for Probabilistic Time Series Prediction PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1