生成式扩散模型中的条件采样

Zheng Zhao, Ziwei Luo, Jens Sjölund, Thomas B. Schön
{"title":"生成式扩散模型中的条件采样","authors":"Zheng Zhao, Ziwei Luo, Jens Sjölund, Thomas B. Schön","doi":"arxiv-2409.09650","DOIUrl":null,"url":null,"abstract":"Generative diffusions are a powerful class of Monte Carlo samplers that\nleverage bridging Markov processes to approximate complex, high-dimensional\ndistributions, such as those found in image processing and language models.\nDespite their success in these domains, an important open challenge remains:\nextending these techniques to sample from conditional distributions, as\nrequired in, for example, Bayesian inverse problems. In this paper, we present\na comprehensive review of existing computational approaches to conditional\nsampling within generative diffusion models. Specifically, we highlight key\nmethodologies that either utilise the joint distribution, or rely on\n(pre-trained) marginal distributions with explicit likelihoods, to construct\nconditional generative samplers.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conditional sampling within generative diffusion models\",\"authors\":\"Zheng Zhao, Ziwei Luo, Jens Sjölund, Thomas B. Schön\",\"doi\":\"arxiv-2409.09650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generative diffusions are a powerful class of Monte Carlo samplers that\\nleverage bridging Markov processes to approximate complex, high-dimensional\\ndistributions, such as those found in image processing and language models.\\nDespite their success in these domains, an important open challenge remains:\\nextending these techniques to sample from conditional distributions, as\\nrequired in, for example, Bayesian inverse problems. In this paper, we present\\na comprehensive review of existing computational approaches to conditional\\nsampling within generative diffusion models. Specifically, we highlight key\\nmethodologies that either utilise the joint distribution, or rely on\\n(pre-trained) marginal distributions with explicit likelihoods, to construct\\nconditional generative samplers.\",\"PeriodicalId\":501340,\"journal\":{\"name\":\"arXiv - STAT - Machine Learning\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生成扩散是一类功能强大的蒙特卡罗采样器,它利用桥接马尔可夫过程来逼近复杂的高维分布,如图像处理和语言模型中的分布。尽管它们在这些领域取得了成功,但一个重要的挑战依然存在:将这些技术扩展到条件分布的采样,如贝叶斯逆问题中所要求的那样。在本文中,我们全面回顾了生成扩散模型中条件采样的现有计算方法。具体来说,我们重点介绍了利用联合分布或依赖具有显式似然的(预训练)边际分布来构建条件生成采样器的关键方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Conditional sampling within generative diffusion models
Generative diffusions are a powerful class of Monte Carlo samplers that leverage bridging Markov processes to approximate complex, high-dimensional distributions, such as those found in image processing and language models. Despite their success in these domains, an important open challenge remains: extending these techniques to sample from conditional distributions, as required in, for example, Bayesian inverse problems. In this paper, we present a comprehensive review of existing computational approaches to conditional sampling within generative diffusion models. Specifically, we highlight key methodologies that either utilise the joint distribution, or rely on (pre-trained) marginal distributions with explicit likelihoods, to construct conditional generative samplers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fitting Multilevel Factor Models Cartan moving frames and the data manifolds Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks Recurrent Interpolants for Probabilistic Time Series Prediction PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1