Nafeisa Dilixiati,Mengyu Lian,Ziliang Hou,Jie Song,Jingjing Yang,Ruiyan Lin,Jinxiang Wang
{"title":"预测 pAECOPD 住院患者住院费用高昂和住院时间延长的提名图。","authors":"Nafeisa Dilixiati,Mengyu Lian,Ziliang Hou,Jie Song,Jingjing Yang,Ruiyan Lin,Jinxiang Wang","doi":"10.1155/2024/2639080","DOIUrl":null,"url":null,"abstract":"This study aimed to develop nomograms to predict high hospitalization costs and prolonged stays in hospitalized acute exacerbations of chronic obstructive pulmonary disease (AECOPD) patients with community-acquired pneumonia (CAP), also known as pAECOPD. A total of 635 patients with pAECOPD were included in this observational study and divided into training and testing sets. Variables were initially screened using univariate analysis, and then further selected using a backward stepwise regression. Multivariable logistic regression was performed to establish nomograms. The predictive performance of the model was evaluated using the receiver operating characteristic (ROC) curve, area under the curve (AUC), calibration curve, and decision curve analysis (DCA) in both the training and testing sets. Finally, the logistic regression analysis showed that elevated white blood cell count (WBC>10 × 109 cells/l), hypoalbuminemia, pulmonary encephalopathy, respiratory failure, diabetes, and respiratory intensive care unit (RICU) admissions were risk factors for predicting high hospitalization costs in pAECOPD patients. The AUC value was 0.756 (95% CI: 0.699-0.812) in the training set and 0.792 (95% CI: 0.718-0.867) in the testing set. The calibration plot and DCA curve indicated the model had good predictive performance. Furthermore, decreased total protein, pulmonary encephalopathy, reflux esophagitis, and RICU admissions were risk factors for predicting prolonged stays in pAECOPD patients. The AUC value was 0.629 (95% CI: 0.575-0.682) in the training set and 0.620 (95% CI: 0.539-0.701) in the testing set. The calibration plot and DCA curve indicated the model had good predictive performance. We developed and validated two nomograms for predicting high hospitalization costs and prolonged stay, respectively, among hospitalized patients with pAECOPD. This trial is registered with ChiCTR2000039959.","PeriodicalId":9416,"journal":{"name":"Canadian respiratory journal","volume":"27 1","pages":"2639080"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nomograms for Predicting High Hospitalization Costs and Prolonged Stay among Hospitalized Patients with pAECOPD.\",\"authors\":\"Nafeisa Dilixiati,Mengyu Lian,Ziliang Hou,Jie Song,Jingjing Yang,Ruiyan Lin,Jinxiang Wang\",\"doi\":\"10.1155/2024/2639080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aimed to develop nomograms to predict high hospitalization costs and prolonged stays in hospitalized acute exacerbations of chronic obstructive pulmonary disease (AECOPD) patients with community-acquired pneumonia (CAP), also known as pAECOPD. A total of 635 patients with pAECOPD were included in this observational study and divided into training and testing sets. Variables were initially screened using univariate analysis, and then further selected using a backward stepwise regression. Multivariable logistic regression was performed to establish nomograms. The predictive performance of the model was evaluated using the receiver operating characteristic (ROC) curve, area under the curve (AUC), calibration curve, and decision curve analysis (DCA) in both the training and testing sets. Finally, the logistic regression analysis showed that elevated white blood cell count (WBC>10 × 109 cells/l), hypoalbuminemia, pulmonary encephalopathy, respiratory failure, diabetes, and respiratory intensive care unit (RICU) admissions were risk factors for predicting high hospitalization costs in pAECOPD patients. The AUC value was 0.756 (95% CI: 0.699-0.812) in the training set and 0.792 (95% CI: 0.718-0.867) in the testing set. The calibration plot and DCA curve indicated the model had good predictive performance. Furthermore, decreased total protein, pulmonary encephalopathy, reflux esophagitis, and RICU admissions were risk factors for predicting prolonged stays in pAECOPD patients. The AUC value was 0.629 (95% CI: 0.575-0.682) in the training set and 0.620 (95% CI: 0.539-0.701) in the testing set. The calibration plot and DCA curve indicated the model had good predictive performance. We developed and validated two nomograms for predicting high hospitalization costs and prolonged stay, respectively, among hospitalized patients with pAECOPD. This trial is registered with ChiCTR2000039959.\",\"PeriodicalId\":9416,\"journal\":{\"name\":\"Canadian respiratory journal\",\"volume\":\"27 1\",\"pages\":\"2639080\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian respiratory journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/2639080\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian respiratory journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2024/2639080","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
Nomograms for Predicting High Hospitalization Costs and Prolonged Stay among Hospitalized Patients with pAECOPD.
This study aimed to develop nomograms to predict high hospitalization costs and prolonged stays in hospitalized acute exacerbations of chronic obstructive pulmonary disease (AECOPD) patients with community-acquired pneumonia (CAP), also known as pAECOPD. A total of 635 patients with pAECOPD were included in this observational study and divided into training and testing sets. Variables were initially screened using univariate analysis, and then further selected using a backward stepwise regression. Multivariable logistic regression was performed to establish nomograms. The predictive performance of the model was evaluated using the receiver operating characteristic (ROC) curve, area under the curve (AUC), calibration curve, and decision curve analysis (DCA) in both the training and testing sets. Finally, the logistic regression analysis showed that elevated white blood cell count (WBC>10 × 109 cells/l), hypoalbuminemia, pulmonary encephalopathy, respiratory failure, diabetes, and respiratory intensive care unit (RICU) admissions were risk factors for predicting high hospitalization costs in pAECOPD patients. The AUC value was 0.756 (95% CI: 0.699-0.812) in the training set and 0.792 (95% CI: 0.718-0.867) in the testing set. The calibration plot and DCA curve indicated the model had good predictive performance. Furthermore, decreased total protein, pulmonary encephalopathy, reflux esophagitis, and RICU admissions were risk factors for predicting prolonged stays in pAECOPD patients. The AUC value was 0.629 (95% CI: 0.575-0.682) in the training set and 0.620 (95% CI: 0.539-0.701) in the testing set. The calibration plot and DCA curve indicated the model had good predictive performance. We developed and validated two nomograms for predicting high hospitalization costs and prolonged stay, respectively, among hospitalized patients with pAECOPD. This trial is registered with ChiCTR2000039959.
期刊介绍:
Canadian Respiratory Journal is a peer-reviewed, Open Access journal that aims to provide a multidisciplinary forum for research in all areas of respiratory medicine. The journal publishes original research articles, review articles, and clinical studies related to asthma, allergy, COPD, non-invasive ventilation, therapeutic intervention, lung cancer, airway and lung infections, as well as any other respiratory diseases.