对称丰富学习:稳健机器学习模型的类别理论框架

Ronald Katende
{"title":"对称丰富学习:稳健机器学习模型的类别理论框架","authors":"Ronald Katende","doi":"arxiv-2409.12100","DOIUrl":null,"url":null,"abstract":"This manuscript presents a novel framework that integrates higher-order\nsymmetries and category theory into machine learning. We introduce new\nmathematical constructs, including hyper-symmetry categories and functorial\nrepresentations, to model complex transformations within learning algorithms.\nOur contributions include the design of symmetry-enriched learning models, the\ndevelopment of advanced optimization techniques leveraging categorical\nsymmetries, and the theoretical analysis of their implications for model\nrobustness, generalization, and convergence. Through rigorous proofs and\npractical applications, we demonstrate that incorporating higher-dimensional\ncategorical structures enhances both the theoretical foundations and practical\ncapabilities of modern machine learning algorithms, opening new directions for\nresearch and innovation.","PeriodicalId":501301,"journal":{"name":"arXiv - CS - Machine Learning","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetry-Enriched Learning: A Category-Theoretic Framework for Robust Machine Learning Models\",\"authors\":\"Ronald Katende\",\"doi\":\"arxiv-2409.12100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This manuscript presents a novel framework that integrates higher-order\\nsymmetries and category theory into machine learning. We introduce new\\nmathematical constructs, including hyper-symmetry categories and functorial\\nrepresentations, to model complex transformations within learning algorithms.\\nOur contributions include the design of symmetry-enriched learning models, the\\ndevelopment of advanced optimization techniques leveraging categorical\\nsymmetries, and the theoretical analysis of their implications for model\\nrobustness, generalization, and convergence. Through rigorous proofs and\\npractical applications, we demonstrate that incorporating higher-dimensional\\ncategorical structures enhances both the theoretical foundations and practical\\ncapabilities of modern machine learning algorithms, opening new directions for\\nresearch and innovation.\",\"PeriodicalId\":501301,\"journal\":{\"name\":\"arXiv - CS - Machine Learning\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.12100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本手稿提出了一个新颖的框架,将高阶对称和范畴理论整合到机器学习中。我们的贡献包括设计对称性丰富的学习模型、开发利用分类对称性的高级优化技术,以及从理论上分析它们对模型稳健性、泛化和收敛性的影响。通过严格的证明和实际应用,我们证明了结合高维分类结构可以增强现代机器学习算法的理论基础和实际能力,为研究和创新开辟了新的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Symmetry-Enriched Learning: A Category-Theoretic Framework for Robust Machine Learning Models
This manuscript presents a novel framework that integrates higher-order symmetries and category theory into machine learning. We introduce new mathematical constructs, including hyper-symmetry categories and functorial representations, to model complex transformations within learning algorithms. Our contributions include the design of symmetry-enriched learning models, the development of advanced optimization techniques leveraging categorical symmetries, and the theoretical analysis of their implications for model robustness, generalization, and convergence. Through rigorous proofs and practical applications, we demonstrate that incorporating higher-dimensional categorical structures enhances both the theoretical foundations and practical capabilities of modern machine learning algorithms, opening new directions for research and innovation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Almost Sure Convergence of Linear Temporal Difference Learning with Arbitrary Features The Impact of Element Ordering on LM Agent Performance Towards Interpretable End-Stage Renal Disease (ESRD) Prediction: Utilizing Administrative Claims Data with Explainable AI Techniques Extended Deep Submodular Functions Symmetry-Enriched Learning: A Category-Theoretic Framework for Robust Machine Learning Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1