{"title":"磁共振成像预测食管癌放疗和化疗早期反应的 Meta 分析。","authors":"Xinyu Li, Fang Yuan, Li Ni, Xiaopan Li","doi":"10.1016/j.acra.2024.08.055","DOIUrl":null,"url":null,"abstract":"<div><h3>Rationale and Objectives</h3><div>At present, the application of magnetic resonance imaging (MRI) in the prediction of response to neoadjuvant therapy and concurrent chemoradiotherapy for the treatment of esophageal cancer still needs to be further explored, and its early differential value remains controversial, thus we carried out this systematic review with a meta-analysis. In the application, different MRI sequences and corresponding parameters are used for the differential diagnosis of the response to neoadjuvant therapy and concurrent chemoradiotherapy.</div></div><div><h3>Methods</h3><div>All relevant studies evaluated the efficacy and response to MRI in neoadjuvant therapy or concurrent chemoradiotherapy for esophageal cancer on Pubmed, Embase, Cohrane Library, and Web of Science databases published before October 10, 2023 (inclusive) were systematically searched. A revised tool was used to assess the quality of diagnostic accuracy studies (QUADAS-2) to assess the risk of bias in the included original studies. A subgroup analysis of MRI sequences diffusion weighted imaging (DWI), dynamic contrast enhanced (DCE) and their corresponding different parameters, as well as the acquisition timepoints (before and after treatment) for different parameters, was performed during the meta-analysis. The bivariate mixed-effects model was used for meta-analysis.</div></div><div><h3>Results</h3><div>21 studies were finally included, involving 1128 patients with esophageal cancer. The sensitivity, specificity, and area under receiver operating characteristic curve (ROC curve) of DWI sequence for identifying response to concurrent chemoradiotherapy were 0.82 (95% CI: 0.74–0.87), 0.81 (95% CI: 0.72–0.87) and 0.88 (95% CI: 0.56–0.98), respectively. The sensitivity, specificity, and area under ROC curve of DCE sequence for identifying response to concurrent chemoradiotherapy were 0.78 (95% CI: 0.70–0.84), 0.65 (95% CI: 0.59–0.70) and 0.73 (95% CI: 0.50–0.88), respectively. In patients with esophageal cancer, the sensitivity, specificity, and area under the ROC curve of DWI sequences for identifying response to neoadjuvant therapy were 0.80 (95% CI: 0.69 - 0.88), 0.81 (95% CI: 0.69 - 0.89), and 0.88 (95% CI: 0.34 - 0.99), respectively; the sensitivity, specificity, and area under the ROC curve of DCE sequences for identifying response to neoadjuvant therapy were 0.84 (95% CI: 0.76 - 0.90), 0.61 (95% CI: 0.53 - 0.68), and 0.70 (95% CI: 0.27 - 0.94), respectively.</div></div><div><h3>Conclusions</h3><div>Based on the available evidence, MRI had a very good value in the early identification of response to neoadjuvant therapy and concurrent chemoradiotherapy for esophageal cancer, especially DWI. Apparent diffusion coefficient (ADC) value changes before and after treatment could be used as predictors of pathological response. Also, ADC value changes before and after treatment could be used as a tool to guide clinical decision-making.</div></div>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":"32 2","pages":"Pages 798-812"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meta-Analysis of MRI in Predicting Early Response to Radiotherapy and Chemotherapy in Esophageal Cancer\",\"authors\":\"Xinyu Li, Fang Yuan, Li Ni, Xiaopan Li\",\"doi\":\"10.1016/j.acra.2024.08.055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Rationale and Objectives</h3><div>At present, the application of magnetic resonance imaging (MRI) in the prediction of response to neoadjuvant therapy and concurrent chemoradiotherapy for the treatment of esophageal cancer still needs to be further explored, and its early differential value remains controversial, thus we carried out this systematic review with a meta-analysis. In the application, different MRI sequences and corresponding parameters are used for the differential diagnosis of the response to neoadjuvant therapy and concurrent chemoradiotherapy.</div></div><div><h3>Methods</h3><div>All relevant studies evaluated the efficacy and response to MRI in neoadjuvant therapy or concurrent chemoradiotherapy for esophageal cancer on Pubmed, Embase, Cohrane Library, and Web of Science databases published before October 10, 2023 (inclusive) were systematically searched. A revised tool was used to assess the quality of diagnostic accuracy studies (QUADAS-2) to assess the risk of bias in the included original studies. A subgroup analysis of MRI sequences diffusion weighted imaging (DWI), dynamic contrast enhanced (DCE) and their corresponding different parameters, as well as the acquisition timepoints (before and after treatment) for different parameters, was performed during the meta-analysis. The bivariate mixed-effects model was used for meta-analysis.</div></div><div><h3>Results</h3><div>21 studies were finally included, involving 1128 patients with esophageal cancer. The sensitivity, specificity, and area under receiver operating characteristic curve (ROC curve) of DWI sequence for identifying response to concurrent chemoradiotherapy were 0.82 (95% CI: 0.74–0.87), 0.81 (95% CI: 0.72–0.87) and 0.88 (95% CI: 0.56–0.98), respectively. The sensitivity, specificity, and area under ROC curve of DCE sequence for identifying response to concurrent chemoradiotherapy were 0.78 (95% CI: 0.70–0.84), 0.65 (95% CI: 0.59–0.70) and 0.73 (95% CI: 0.50–0.88), respectively. In patients with esophageal cancer, the sensitivity, specificity, and area under the ROC curve of DWI sequences for identifying response to neoadjuvant therapy were 0.80 (95% CI: 0.69 - 0.88), 0.81 (95% CI: 0.69 - 0.89), and 0.88 (95% CI: 0.34 - 0.99), respectively; the sensitivity, specificity, and area under the ROC curve of DCE sequences for identifying response to neoadjuvant therapy were 0.84 (95% CI: 0.76 - 0.90), 0.61 (95% CI: 0.53 - 0.68), and 0.70 (95% CI: 0.27 - 0.94), respectively.</div></div><div><h3>Conclusions</h3><div>Based on the available evidence, MRI had a very good value in the early identification of response to neoadjuvant therapy and concurrent chemoradiotherapy for esophageal cancer, especially DWI. Apparent diffusion coefficient (ADC) value changes before and after treatment could be used as predictors of pathological response. Also, ADC value changes before and after treatment could be used as a tool to guide clinical decision-making.</div></div>\",\"PeriodicalId\":50928,\"journal\":{\"name\":\"Academic Radiology\",\"volume\":\"32 2\",\"pages\":\"Pages 798-812\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1076633224006196\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1076633224006196","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Meta-Analysis of MRI in Predicting Early Response to Radiotherapy and Chemotherapy in Esophageal Cancer
Rationale and Objectives
At present, the application of magnetic resonance imaging (MRI) in the prediction of response to neoadjuvant therapy and concurrent chemoradiotherapy for the treatment of esophageal cancer still needs to be further explored, and its early differential value remains controversial, thus we carried out this systematic review with a meta-analysis. In the application, different MRI sequences and corresponding parameters are used for the differential diagnosis of the response to neoadjuvant therapy and concurrent chemoradiotherapy.
Methods
All relevant studies evaluated the efficacy and response to MRI in neoadjuvant therapy or concurrent chemoradiotherapy for esophageal cancer on Pubmed, Embase, Cohrane Library, and Web of Science databases published before October 10, 2023 (inclusive) were systematically searched. A revised tool was used to assess the quality of diagnostic accuracy studies (QUADAS-2) to assess the risk of bias in the included original studies. A subgroup analysis of MRI sequences diffusion weighted imaging (DWI), dynamic contrast enhanced (DCE) and their corresponding different parameters, as well as the acquisition timepoints (before and after treatment) for different parameters, was performed during the meta-analysis. The bivariate mixed-effects model was used for meta-analysis.
Results
21 studies were finally included, involving 1128 patients with esophageal cancer. The sensitivity, specificity, and area under receiver operating characteristic curve (ROC curve) of DWI sequence for identifying response to concurrent chemoradiotherapy were 0.82 (95% CI: 0.74–0.87), 0.81 (95% CI: 0.72–0.87) and 0.88 (95% CI: 0.56–0.98), respectively. The sensitivity, specificity, and area under ROC curve of DCE sequence for identifying response to concurrent chemoradiotherapy were 0.78 (95% CI: 0.70–0.84), 0.65 (95% CI: 0.59–0.70) and 0.73 (95% CI: 0.50–0.88), respectively. In patients with esophageal cancer, the sensitivity, specificity, and area under the ROC curve of DWI sequences for identifying response to neoadjuvant therapy were 0.80 (95% CI: 0.69 - 0.88), 0.81 (95% CI: 0.69 - 0.89), and 0.88 (95% CI: 0.34 - 0.99), respectively; the sensitivity, specificity, and area under the ROC curve of DCE sequences for identifying response to neoadjuvant therapy were 0.84 (95% CI: 0.76 - 0.90), 0.61 (95% CI: 0.53 - 0.68), and 0.70 (95% CI: 0.27 - 0.94), respectively.
Conclusions
Based on the available evidence, MRI had a very good value in the early identification of response to neoadjuvant therapy and concurrent chemoradiotherapy for esophageal cancer, especially DWI. Apparent diffusion coefficient (ADC) value changes before and after treatment could be used as predictors of pathological response. Also, ADC value changes before and after treatment could be used as a tool to guide clinical decision-making.
期刊介绍:
Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.