利用 LLM 实现时间序列推理

Winnie Chow, Lauren Gardiner, Haraldur T. Hallgrímsson, Maxwell A. Xu, Shirley You Ren
{"title":"利用 LLM 实现时间序列推理","authors":"Winnie Chow, Lauren Gardiner, Haraldur T. Hallgrímsson, Maxwell A. Xu, Shirley You Ren","doi":"arxiv-2409.11376","DOIUrl":null,"url":null,"abstract":"Multi-modal large language models (MLLMs) have enabled numerous advances in\nunderstanding and reasoning in domains like vision, but we have not yet seen\nthis broad success for time-series. Although prior works on time-series MLLMs\nhave shown promising performance in time-series forecasting, very few works\nshow how an LLM could be used for time-series reasoning in natural language. We\npropose a novel multi-modal time-series LLM approach that learns generalizable\ninformation across various domains with powerful zero-shot performance. First,\nwe train a lightweight time-series encoder on top of an LLM to directly extract\ntime-series information. Then, we fine-tune our model with chain-of-thought\naugmented time-series tasks to encourage the model to generate reasoning paths.\nWe show that our model learns a latent representation that reflects specific\ntime-series features (e.g. slope, frequency), as well as outperforming GPT-4o\non a set of zero-shot reasoning tasks on a variety of domains.","PeriodicalId":501301,"journal":{"name":"arXiv - CS - Machine Learning","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Time Series Reasoning with LLMs\",\"authors\":\"Winnie Chow, Lauren Gardiner, Haraldur T. Hallgrímsson, Maxwell A. Xu, Shirley You Ren\",\"doi\":\"arxiv-2409.11376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-modal large language models (MLLMs) have enabled numerous advances in\\nunderstanding and reasoning in domains like vision, but we have not yet seen\\nthis broad success for time-series. Although prior works on time-series MLLMs\\nhave shown promising performance in time-series forecasting, very few works\\nshow how an LLM could be used for time-series reasoning in natural language. We\\npropose a novel multi-modal time-series LLM approach that learns generalizable\\ninformation across various domains with powerful zero-shot performance. First,\\nwe train a lightweight time-series encoder on top of an LLM to directly extract\\ntime-series information. Then, we fine-tune our model with chain-of-thought\\naugmented time-series tasks to encourage the model to generate reasoning paths.\\nWe show that our model learns a latent representation that reflects specific\\ntime-series features (e.g. slope, frequency), as well as outperforming GPT-4o\\non a set of zero-shot reasoning tasks on a variety of domains.\",\"PeriodicalId\":501301,\"journal\":{\"name\":\"arXiv - CS - Machine Learning\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多模态大型语言模型(MLLM)在视觉等领域的理解和推理方面取得了许多进步,但我们还没有在时间序列方面看到如此广泛的成功。虽然之前关于时间序列 MLLM 的研究已经在时间序列预测方面取得了可喜的成绩,但很少有研究表明 LLM 如何用于自然语言的时间序列推理。我们提出了一种新颖的多模态时间序列 LLM 方法,它可以学习各种领域的通用信息,并具有强大的零点性能。首先,我们在 LLM 的基础上训练了一个轻量级时间序列编码器,以直接提取时间序列信息。我们的研究表明,我们的模型可以学习到反映特定时间序列特征(如斜率、频率)的潜在表征,并且在多个领域的一组零点推理任务中表现优于 GPT-4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Time Series Reasoning with LLMs
Multi-modal large language models (MLLMs) have enabled numerous advances in understanding and reasoning in domains like vision, but we have not yet seen this broad success for time-series. Although prior works on time-series MLLMs have shown promising performance in time-series forecasting, very few works show how an LLM could be used for time-series reasoning in natural language. We propose a novel multi-modal time-series LLM approach that learns generalizable information across various domains with powerful zero-shot performance. First, we train a lightweight time-series encoder on top of an LLM to directly extract time-series information. Then, we fine-tune our model with chain-of-thought augmented time-series tasks to encourage the model to generate reasoning paths. We show that our model learns a latent representation that reflects specific time-series features (e.g. slope, frequency), as well as outperforming GPT-4o on a set of zero-shot reasoning tasks on a variety of domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Almost Sure Convergence of Linear Temporal Difference Learning with Arbitrary Features The Impact of Element Ordering on LM Agent Performance Towards Interpretable End-Stage Renal Disease (ESRD) Prediction: Utilizing Administrative Claims Data with Explainable AI Techniques Extended Deep Submodular Functions Symmetry-Enriched Learning: A Category-Theoretic Framework for Robust Machine Learning Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1