呼吸系统疾病中的呼出气体冷凝物(EBC):Omic 科学时代的最新进展和未来展望。

IF 3.7 4区 医学 Q1 BIOCHEMICAL RESEARCH METHODS Journal of breath research Pub Date : 2024-09-13 DOI:10.1088/1752-7163/ad7a9a
Mauro Maniscalco,Claudio Candia,Salvatore Fuschillo,Pasquale Ambrosino,Debora Paris,Andrea Motta
{"title":"呼吸系统疾病中的呼出气体冷凝物(EBC):Omic 科学时代的最新进展和未来展望。","authors":"Mauro Maniscalco,Claudio Candia,Salvatore Fuschillo,Pasquale Ambrosino,Debora Paris,Andrea Motta","doi":"10.1088/1752-7163/ad7a9a","DOIUrl":null,"url":null,"abstract":"Exhaled breath condensate (EBC) is used as a promising noninvasive diagnostic tool in the field of respiratory medicine. EBC is achieved by cooling exhaled air, which contains aerosolized particles and volatile compounds present in the breath. This method provides useful information on the biochemical and inflammatory state of the airways. In respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis, EBC analysis can reveal elevated levels of biomarkers such as hydrogen peroxide, nitric oxide and various cytokines, which correlate with oxidative stress and inflammation. 
Furthermore, the presence of certain volatile organic compounds (VOCs) in EBC has been linked to specific respiratory conditions, potentially serving as disease-specific fingerprints. The noninvasive nature of EBC sampling makes it particularly useful for repeated measures and for use in vulnerable populations, including children and the elderly. Despite its potential, the standardization of collection methods, analytical techniques and interpretation of results currently limits its use in clinical practice. 
Nonetheless, EBC holds significant promise for improving the diagnosis, monitoring and therapy of respiratory diseases.
In this tutorial we will present the latest advances in EBC research in airway diseases and future prospects for clinical applications of EBC analysis, including the application of the Omic sciences for its analysis.&#xD.","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":"30 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exhaled breath condensate (EBC) in respiratory diseases: Recent advances, and future perspectives in the age of Omic sciences.\",\"authors\":\"Mauro Maniscalco,Claudio Candia,Salvatore Fuschillo,Pasquale Ambrosino,Debora Paris,Andrea Motta\",\"doi\":\"10.1088/1752-7163/ad7a9a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exhaled breath condensate (EBC) is used as a promising noninvasive diagnostic tool in the field of respiratory medicine. EBC is achieved by cooling exhaled air, which contains aerosolized particles and volatile compounds present in the breath. This method provides useful information on the biochemical and inflammatory state of the airways. In respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis, EBC analysis can reveal elevated levels of biomarkers such as hydrogen peroxide, nitric oxide and various cytokines, which correlate with oxidative stress and inflammation. 
Furthermore, the presence of certain volatile organic compounds (VOCs) in EBC has been linked to specific respiratory conditions, potentially serving as disease-specific fingerprints. The noninvasive nature of EBC sampling makes it particularly useful for repeated measures and for use in vulnerable populations, including children and the elderly. Despite its potential, the standardization of collection methods, analytical techniques and interpretation of results currently limits its use in clinical practice. 
Nonetheless, EBC holds significant promise for improving the diagnosis, monitoring and therapy of respiratory diseases.
In this tutorial we will present the latest advances in EBC research in airway diseases and future prospects for clinical applications of EBC analysis, including the application of the Omic sciences for its analysis.&#xD.\",\"PeriodicalId\":15306,\"journal\":{\"name\":\"Journal of breath research\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of breath research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1088/1752-7163/ad7a9a\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of breath research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1088/1752-7163/ad7a9a","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

呼出气体冷凝物(EBC)是呼吸医学领域一种前景广阔的无创诊断工具。EBC 是通过冷却呼出的空气实现的,呼出的空气中含有气溶胶颗粒和挥发性化合物。这种方法可提供有关气道生化和炎症状态的有用信息。在哮喘、慢性阻塞性肺病 (COPD) 和囊性纤维化等呼吸系统疾病中,EBC 分析可揭示过氧化氢、一氧化氮和各种细胞因子等生物标记物水平的升高,这些标记物与氧化应激和炎症相关。EBC 采样的非侵入性使其特别适用于重复测量,也适用于包括儿童和老人在内的易感人群。尽管EBC具有很大的潜力,但其采集方法、分析技术和结果解释的标准化目前限制了它在临床实践中的应用。 在本教程中,我们将介绍气道疾病EBC研究的最新进展以及EBC分析临床应用的未来前景,包括应用Omic科学进行分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exhaled breath condensate (EBC) in respiratory diseases: Recent advances, and future perspectives in the age of Omic sciences.
Exhaled breath condensate (EBC) is used as a promising noninvasive diagnostic tool in the field of respiratory medicine. EBC is achieved by cooling exhaled air, which contains aerosolized particles and volatile compounds present in the breath. This method provides useful information on the biochemical and inflammatory state of the airways. In respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis, EBC analysis can reveal elevated levels of biomarkers such as hydrogen peroxide, nitric oxide and various cytokines, which correlate with oxidative stress and inflammation. Furthermore, the presence of certain volatile organic compounds (VOCs) in EBC has been linked to specific respiratory conditions, potentially serving as disease-specific fingerprints. The noninvasive nature of EBC sampling makes it particularly useful for repeated measures and for use in vulnerable populations, including children and the elderly. Despite its potential, the standardization of collection methods, analytical techniques and interpretation of results currently limits its use in clinical practice. Nonetheless, EBC holds significant promise for improving the diagnosis, monitoring and therapy of respiratory diseases. In this tutorial we will present the latest advances in EBC research in airway diseases and future prospects for clinical applications of EBC analysis, including the application of the Omic sciences for its analysis. .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of breath research
Journal of breath research BIOCHEMICAL RESEARCH METHODS-RESPIRATORY SYSTEM
CiteScore
7.60
自引率
21.10%
发文量
49
审稿时长
>12 weeks
期刊介绍: Journal of Breath Research is dedicated to all aspects of scientific breath research. The traditional focus is on analysis of volatile compounds and aerosols in exhaled breath for the investigation of exogenous exposures, metabolism, toxicology, health status and the diagnosis of disease and breath odours. The journal also welcomes other breath-related topics. Typical areas of interest include: Big laboratory instrumentation: describing new state-of-the-art analytical instrumentation capable of performing high-resolution discovery and targeted breath research; exploiting complex technologies drawn from other areas of biochemistry and genetics for breath research. Engineering solutions: developing new breath sampling technologies for condensate and aerosols, for chemical and optical sensors, for extraction and sample preparation methods, for automation and standardization, and for multiplex analyses to preserve the breath matrix and facilitating analytical throughput. Measure exhaled constituents (e.g. CO2, acetone, isoprene) as markers of human presence or mitigate such contaminants in enclosed environments. Human and animal in vivo studies: decoding the ''breath exposome'', implementing exposure and intervention studies, performing cross-sectional and case-control research, assaying immune and inflammatory response, and testing mammalian host response to infections and exogenous exposures to develop information directly applicable to systems biology. Studying inhalation toxicology; inhaled breath as a source of internal dose; resultant blood, breath and urinary biomarkers linked to inhalation pathway. Cellular and molecular level in vitro studies. Clinical, pharmacological and forensic applications. Mathematical, statistical and graphical data interpretation.
期刊最新文献
Correlations between Propofol Concentration in Exhaled Breath and BIS in Patients undergoing Thyroid Surgery. Halitosis in oral lichen planus patients. Validation of a sensor system for the measurement of breath ammonia using selected-ion flow-tube mass spectrometry. Therapeutic efficacy of a probiotic preparation on idiopathic halitosis: a retrospective observational study. Effectiveness of a combination of laccase and green coffee extract on oral malodor: A comparative, randomized, controlled, evaluator-blind, parallel-group trial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1