{"title":"基于知识图谱构建地球观测知识枢纽","authors":"Kuangsheng Cai, Zugang Chen, Jin Li, Shaohua Wang, Guoqing Li, Jing Li, Hengliang Guo, Feng Chen, Liping Zhu","doi":"10.1111/tgis.13247","DOIUrl":null,"url":null,"abstract":"Owing to the rapid development of Earth observation and Internet technology, researchers have acquired and shared a large amount of Earth observation data. However, traditional data sharing does not provide direct solutions to problems. The large amount of tacit knowledge contained in scientific data, scientific literature, analysis models, software/code, documentation, and other scientific resources on Earth observation applications has not been effectively organized and shared. To solve this problem, the Group on Earth Observations proposed an Earth Observation Knowledge Hub (EOKH); however, there is no unified and clear method for building an EOKH to date. This paper presents an automatic construction method for an EOKH on the basis of a knowledge graph, which describes scientific data, scientific literature, analysis models, software/code, documentation, and other scientific resources and their semantic relationships. An automatic discovery algorithm of scientific and technological resources was also constructed in this study on the basis of a knowledge graph from the Internet. This algorithm is capable of the automatic creation of knowledge packages and the construction of links between knowledge elements. Then, the knowledge discovery algorithm was evaluated through comparison with an existing method in relation to accuracy, and the results showed that our method outperforms the existing method. Lastly, the knowledge package was published on the Linked Open Data Cloud platform in the Resource Description Framework format, and an EOKH was created. Moreover, an application terminal based on SPARQL allowing users to search the EOKH was developed. A clear and operational method for the construction of an EOKH is proposed for the first time in this research, laying the foundation for the development of the EOKH.","PeriodicalId":47842,"journal":{"name":"Transactions in GIS","volume":"18 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of Earth Observation Knowledge Hub Based on Knowledge Graph\",\"authors\":\"Kuangsheng Cai, Zugang Chen, Jin Li, Shaohua Wang, Guoqing Li, Jing Li, Hengliang Guo, Feng Chen, Liping Zhu\",\"doi\":\"10.1111/tgis.13247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Owing to the rapid development of Earth observation and Internet technology, researchers have acquired and shared a large amount of Earth observation data. However, traditional data sharing does not provide direct solutions to problems. The large amount of tacit knowledge contained in scientific data, scientific literature, analysis models, software/code, documentation, and other scientific resources on Earth observation applications has not been effectively organized and shared. To solve this problem, the Group on Earth Observations proposed an Earth Observation Knowledge Hub (EOKH); however, there is no unified and clear method for building an EOKH to date. This paper presents an automatic construction method for an EOKH on the basis of a knowledge graph, which describes scientific data, scientific literature, analysis models, software/code, documentation, and other scientific resources and their semantic relationships. An automatic discovery algorithm of scientific and technological resources was also constructed in this study on the basis of a knowledge graph from the Internet. This algorithm is capable of the automatic creation of knowledge packages and the construction of links between knowledge elements. Then, the knowledge discovery algorithm was evaluated through comparison with an existing method in relation to accuracy, and the results showed that our method outperforms the existing method. Lastly, the knowledge package was published on the Linked Open Data Cloud platform in the Resource Description Framework format, and an EOKH was created. Moreover, an application terminal based on SPARQL allowing users to search the EOKH was developed. A clear and operational method for the construction of an EOKH is proposed for the first time in this research, laying the foundation for the development of the EOKH.\",\"PeriodicalId\":47842,\"journal\":{\"name\":\"Transactions in GIS\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions in GIS\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1111/tgis.13247\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions in GIS","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/tgis.13247","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY","Score":null,"Total":0}
Construction of Earth Observation Knowledge Hub Based on Knowledge Graph
Owing to the rapid development of Earth observation and Internet technology, researchers have acquired and shared a large amount of Earth observation data. However, traditional data sharing does not provide direct solutions to problems. The large amount of tacit knowledge contained in scientific data, scientific literature, analysis models, software/code, documentation, and other scientific resources on Earth observation applications has not been effectively organized and shared. To solve this problem, the Group on Earth Observations proposed an Earth Observation Knowledge Hub (EOKH); however, there is no unified and clear method for building an EOKH to date. This paper presents an automatic construction method for an EOKH on the basis of a knowledge graph, which describes scientific data, scientific literature, analysis models, software/code, documentation, and other scientific resources and their semantic relationships. An automatic discovery algorithm of scientific and technological resources was also constructed in this study on the basis of a knowledge graph from the Internet. This algorithm is capable of the automatic creation of knowledge packages and the construction of links between knowledge elements. Then, the knowledge discovery algorithm was evaluated through comparison with an existing method in relation to accuracy, and the results showed that our method outperforms the existing method. Lastly, the knowledge package was published on the Linked Open Data Cloud platform in the Resource Description Framework format, and an EOKH was created. Moreover, an application terminal based on SPARQL allowing users to search the EOKH was developed. A clear and operational method for the construction of an EOKH is proposed for the first time in this research, laying the foundation for the development of the EOKH.
期刊介绍:
Transactions in GIS is an international journal which provides a forum for high quality, original research articles, review articles, short notes and book reviews that focus on: - practical and theoretical issues influencing the development of GIS - the collection, analysis, modelling, interpretation and display of spatial data within GIS - the connections between GIS and related technologies - new GIS applications which help to solve problems affecting the natural or built environments, or business