{"title":"特斯拉直通阀正反向液压损失实验","authors":"Yan-Juan Zhao, Jiang-Bo Tong, Yu-Liang Zhang, Xiao-Wei Xu, Liang-Huai Tong","doi":"10.1177/00368504241269433","DOIUrl":null,"url":null,"abstract":"Tesla valves are widely used in the field of fluid control. To study the hydraulic performance of straight-through Tesla valves in forward and reverse flow, 16 straight-through Tesla valves with diverse blade parameters were designed in this paper, and hydraulic loss tests were carried out in forward and reverse flow under different working conditions. The results show that the hydraulic loss increases with the increasing working flow rate in forward and reverse flow; at the identical flow rate, the reverse loss is higher than the forward loss. Both the hydraulic loss through the valve and the unidirectional conductivity of the valve increase with increasing blade length, pitch, and number of blades, but too long of a length results in weakened unidirectional conductivity. The hydraulic loss increases with the increase of blade angle, and the unidirectional conductivity decreases with the increase of blade angle. When the blades are arranged in perfect symmetry, the hydraulic loss through the valve is maximum, and the valve has the best unidirectional conductivity.","PeriodicalId":56061,"journal":{"name":"Science Progress","volume":"16 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydraulic loss experiment of straight-through Tesla valve in forward and reverse directions\",\"authors\":\"Yan-Juan Zhao, Jiang-Bo Tong, Yu-Liang Zhang, Xiao-Wei Xu, Liang-Huai Tong\",\"doi\":\"10.1177/00368504241269433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tesla valves are widely used in the field of fluid control. To study the hydraulic performance of straight-through Tesla valves in forward and reverse flow, 16 straight-through Tesla valves with diverse blade parameters were designed in this paper, and hydraulic loss tests were carried out in forward and reverse flow under different working conditions. The results show that the hydraulic loss increases with the increasing working flow rate in forward and reverse flow; at the identical flow rate, the reverse loss is higher than the forward loss. Both the hydraulic loss through the valve and the unidirectional conductivity of the valve increase with increasing blade length, pitch, and number of blades, but too long of a length results in weakened unidirectional conductivity. The hydraulic loss increases with the increase of blade angle, and the unidirectional conductivity decreases with the increase of blade angle. When the blades are arranged in perfect symmetry, the hydraulic loss through the valve is maximum, and the valve has the best unidirectional conductivity.\",\"PeriodicalId\":56061,\"journal\":{\"name\":\"Science Progress\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Progress\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1177/00368504241269433\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Progress","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1177/00368504241269433","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Hydraulic loss experiment of straight-through Tesla valve in forward and reverse directions
Tesla valves are widely used in the field of fluid control. To study the hydraulic performance of straight-through Tesla valves in forward and reverse flow, 16 straight-through Tesla valves with diverse blade parameters were designed in this paper, and hydraulic loss tests were carried out in forward and reverse flow under different working conditions. The results show that the hydraulic loss increases with the increasing working flow rate in forward and reverse flow; at the identical flow rate, the reverse loss is higher than the forward loss. Both the hydraulic loss through the valve and the unidirectional conductivity of the valve increase with increasing blade length, pitch, and number of blades, but too long of a length results in weakened unidirectional conductivity. The hydraulic loss increases with the increase of blade angle, and the unidirectional conductivity decreases with the increase of blade angle. When the blades are arranged in perfect symmetry, the hydraulic loss through the valve is maximum, and the valve has the best unidirectional conductivity.
期刊介绍:
Science Progress has for over 100 years been a highly regarded review publication in science, technology and medicine. Its objective is to excite the readers'' interest in areas with which they may not be fully familiar but which could facilitate their interest, or even activity, in a cognate field.