{"title":"二维费米子超流体中运动孤子的燕尾色散","authors":"Jan Major, Joachim Brand","doi":"10.1103/physreva.110.033320","DOIUrl":null,"url":null,"abstract":"Solitonlike localized wave solutions in a two-dimensional Fermi superfluid are studied by solving the Bogoliubov–de Gennes equations in the BCS regime of weak pairing interactions. The dispersion relations of these solitons are found to exhibit a peculiar swallow-tail shape, with cusps and multiple branches. The effective mass of the solitons is found to diverge and change sign at the cusp. This behavior is in contrast to the smooth dispersion relations and negative effective masses of solitons in the three-dimensional Fermi superfluid. The swallow-tail dispersion relations are shown to be a consequence of counterflow of the superfluid and sign-changing contributions to the superfluid current from different transverse momenta in the Bogoliubov–de Gennes formalism. The results are relevant for the understanding of solitonic excitations in two-dimensional Fermi superfluids, such as ultracold atomic gases and high-temperature superconductors.","PeriodicalId":20146,"journal":{"name":"Physical Review A","volume":"48 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Swallow-tail dispersions of moving solitons in a two-dimensional fermionic superfluid\",\"authors\":\"Jan Major, Joachim Brand\",\"doi\":\"10.1103/physreva.110.033320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solitonlike localized wave solutions in a two-dimensional Fermi superfluid are studied by solving the Bogoliubov–de Gennes equations in the BCS regime of weak pairing interactions. The dispersion relations of these solitons are found to exhibit a peculiar swallow-tail shape, with cusps and multiple branches. The effective mass of the solitons is found to diverge and change sign at the cusp. This behavior is in contrast to the smooth dispersion relations and negative effective masses of solitons in the three-dimensional Fermi superfluid. The swallow-tail dispersion relations are shown to be a consequence of counterflow of the superfluid and sign-changing contributions to the superfluid current from different transverse momenta in the Bogoliubov–de Gennes formalism. The results are relevant for the understanding of solitonic excitations in two-dimensional Fermi superfluids, such as ultracold atomic gases and high-temperature superconductors.\",\"PeriodicalId\":20146,\"journal\":{\"name\":\"Physical Review A\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreva.110.033320\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreva.110.033320","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Swallow-tail dispersions of moving solitons in a two-dimensional fermionic superfluid
Solitonlike localized wave solutions in a two-dimensional Fermi superfluid are studied by solving the Bogoliubov–de Gennes equations in the BCS regime of weak pairing interactions. The dispersion relations of these solitons are found to exhibit a peculiar swallow-tail shape, with cusps and multiple branches. The effective mass of the solitons is found to diverge and change sign at the cusp. This behavior is in contrast to the smooth dispersion relations and negative effective masses of solitons in the three-dimensional Fermi superfluid. The swallow-tail dispersion relations are shown to be a consequence of counterflow of the superfluid and sign-changing contributions to the superfluid current from different transverse momenta in the Bogoliubov–de Gennes formalism. The results are relevant for the understanding of solitonic excitations in two-dimensional Fermi superfluids, such as ultracold atomic gases and high-temperature superconductors.
期刊介绍:
Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts.
PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including:
-Fundamental concepts
-Quantum information
-Atomic and molecular structure and dynamics; high-precision measurement
-Atomic and molecular collisions and interactions
-Atomic and molecular processes in external fields, including interactions with strong fields and short pulses
-Matter waves and collective properties of cold atoms and molecules
-Quantum optics, physics of lasers, nonlinear optics, and classical optics