探测三维散射样品中与位置相关的光能通量率

IF 2.9 2区 物理与天体物理 Q2 Physics and Astronomy Physical Review A Pub Date : 2024-09-18 DOI:10.1103/physreva.110.033520
Ozan Akdemir, Minh Duy Truong, Alfredo Rates, Ad Lagendijk, Willem L. Vos
{"title":"探测三维散射样品中与位置相关的光能通量率","authors":"Ozan Akdemir, Minh Duy Truong, Alfredo Rates, Ad Lagendijk, Willem L. Vos","doi":"10.1103/physreva.110.033520","DOIUrl":null,"url":null,"abstract":"The accurate determination of the position-dependent energy fluence rate of scattered light (which is proportional to the energy density) is crucial to the understanding of transport in anisotropically scattering and absorbing samples, such as biological tissue, seawater, atmospheric turbulent layers, and light-emitting diodes. While Monte Carlo simulations are precise, their long computation time is not desirable. Common analytical approximations to the radiative transfer equation (RTE) fail to predict light transport and could even give unphysical results. Therefore, we experimentally probe the position-dependent energy fluence rate of light inside scattering samples where the widely used <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>P</mi><mn>1</mn></msub></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>P</mi><mn>3</mn></msub></math> approximations to the RTE fail. The samples are three-dimensional (3D) aqueous suspensions of anisotropically scattering and both absorbing and nonabsorbing spherical scatterers, namely, microspheres (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>r</mi><mo>=</mo><mn>0.5</mn><mspace width=\"3.33333pt\"></mspace><mi>µ</mi><mi mathvariant=\"normal\">m</mi></mrow></math>) with and without absorbing dye. To probe the energy fluence rate, we detect the emission of quantum-dot reporter particles that are excited by the incident light and that are contained in a thin capillary. By scanning the capillary through the sample, we access the position dependence. We present a comprehensive discussion of experimental limitations and of both random and systematic errors. Our observations agree well with the Monte Carlo simulations and the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>P</mi><mn>3</mn></msub></math> approximation of the RTE with a correction for forward scattering. In contrast, the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>P</mi><mn>1</mn></msub></math> and the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>P</mi><mn>3</mn></msub></math> approximations deviate increasingly from our observations, ultimately even predicting unphysical negative energies.","PeriodicalId":20146,"journal":{"name":"Physical Review A","volume":"171 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing the position-dependent optical energy fluence rate in three-dimensional scattering samples\",\"authors\":\"Ozan Akdemir, Minh Duy Truong, Alfredo Rates, Ad Lagendijk, Willem L. Vos\",\"doi\":\"10.1103/physreva.110.033520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accurate determination of the position-dependent energy fluence rate of scattered light (which is proportional to the energy density) is crucial to the understanding of transport in anisotropically scattering and absorbing samples, such as biological tissue, seawater, atmospheric turbulent layers, and light-emitting diodes. While Monte Carlo simulations are precise, their long computation time is not desirable. Common analytical approximations to the radiative transfer equation (RTE) fail to predict light transport and could even give unphysical results. Therefore, we experimentally probe the position-dependent energy fluence rate of light inside scattering samples where the widely used <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>P</mi><mn>1</mn></msub></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>P</mi><mn>3</mn></msub></math> approximations to the RTE fail. The samples are three-dimensional (3D) aqueous suspensions of anisotropically scattering and both absorbing and nonabsorbing spherical scatterers, namely, microspheres (<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>r</mi><mo>=</mo><mn>0.5</mn><mspace width=\\\"3.33333pt\\\"></mspace><mi>µ</mi><mi mathvariant=\\\"normal\\\">m</mi></mrow></math>) with and without absorbing dye. To probe the energy fluence rate, we detect the emission of quantum-dot reporter particles that are excited by the incident light and that are contained in a thin capillary. By scanning the capillary through the sample, we access the position dependence. We present a comprehensive discussion of experimental limitations and of both random and systematic errors. Our observations agree well with the Monte Carlo simulations and the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>P</mi><mn>3</mn></msub></math> approximation of the RTE with a correction for forward scattering. In contrast, the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>P</mi><mn>1</mn></msub></math> and the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>P</mi><mn>3</mn></msub></math> approximations deviate increasingly from our observations, ultimately even predicting unphysical negative energies.\",\"PeriodicalId\":20146,\"journal\":{\"name\":\"Physical Review A\",\"volume\":\"171 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreva.110.033520\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreva.110.033520","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

准确测定散射光随位置变化的能量通量率(与能量密度成正比),对于理解各向异性散射和吸收样品(如生物组织、海水、大气湍流层和发光二极管)中的传输至关重要。蒙特卡罗模拟虽然精确,但计算时间长,并不可取。辐射传递方程(RTE)的常见分析近似值无法预测光传输,甚至可能给出非物理结果。因此,我们通过实验探究了散射样品内光的位置依赖性能量通量率,在这些样品中,广泛使用的 P1 和 P3 近似 RTE 均失效。样品是由各向异性散射和吸收与非吸收球形散射体组成的三维(3D)水悬浮液,即含有和不含吸收染料的微球(r=0.5µm)。为了探测能量通量率,我们检测了被入射光激发并包含在细毛细管中的量子点报告粒子的发射。通过扫描穿过样品的毛细管,我们获得了位置依赖性。我们对实验限制以及随机误差和系统误差进行了全面讨论。我们的观测结果与蒙特卡罗模拟和修正了前向散射的 P3 近似 RTE 非常吻合。相比之下,P1 和 P3 近似值与我们的观测结果偏差越来越大,最终甚至预测出了非物理的负能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Probing the position-dependent optical energy fluence rate in three-dimensional scattering samples
The accurate determination of the position-dependent energy fluence rate of scattered light (which is proportional to the energy density) is crucial to the understanding of transport in anisotropically scattering and absorbing samples, such as biological tissue, seawater, atmospheric turbulent layers, and light-emitting diodes. While Monte Carlo simulations are precise, their long computation time is not desirable. Common analytical approximations to the radiative transfer equation (RTE) fail to predict light transport and could even give unphysical results. Therefore, we experimentally probe the position-dependent energy fluence rate of light inside scattering samples where the widely used P1 and P3 approximations to the RTE fail. The samples are three-dimensional (3D) aqueous suspensions of anisotropically scattering and both absorbing and nonabsorbing spherical scatterers, namely, microspheres (r=0.5µm) with and without absorbing dye. To probe the energy fluence rate, we detect the emission of quantum-dot reporter particles that are excited by the incident light and that are contained in a thin capillary. By scanning the capillary through the sample, we access the position dependence. We present a comprehensive discussion of experimental limitations and of both random and systematic errors. Our observations agree well with the Monte Carlo simulations and the P3 approximation of the RTE with a correction for forward scattering. In contrast, the P1 and the P3 approximations deviate increasingly from our observations, ultimately even predicting unphysical negative energies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review A
Physical Review A 物理-光学
CiteScore
5.40
自引率
24.10%
发文量
0
审稿时长
2.2 months
期刊介绍: Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts. PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including: -Fundamental concepts -Quantum information -Atomic and molecular structure and dynamics; high-precision measurement -Atomic and molecular collisions and interactions -Atomic and molecular processes in external fields, including interactions with strong fields and short pulses -Matter waves and collective properties of cold atoms and molecules -Quantum optics, physics of lasers, nonlinear optics, and classical optics
期刊最新文献
Relativistic and recoil corrections to vacuum polarization in muonic systems: Three-photon exchange, gauge invariance, and numerical values Combined microwave and optical spectroscopy for hyperfine structure analysis in thulium atoms Spectral evidence of vibronic Rabi oscillations in the resonance-enhanced photodissociation of MgH+ Universality and two-body losses: Lessons from the effective non-Hermitian dynamics of two particles Reliable quantum memories with unreliable components
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1