{"title":"保护性量子测量的性能优势","authors":"Maximilian Schlosshauer","doi":"10.1103/physreva.110.032215","DOIUrl":null,"url":null,"abstract":"We compare the performance of protective quantum measurements to that of standard projective measurements. Performance is quantified in terms of the uncertainty in the measured expectation value. We derive an expression for the relative performance of these two types of quantum measurements and show explicitly that protective measurements can provide a significant performance advantage over standard projective measurements.","PeriodicalId":20146,"journal":{"name":"Physical Review A","volume":"71 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance advantage of protective quantum measurements\",\"authors\":\"Maximilian Schlosshauer\",\"doi\":\"10.1103/physreva.110.032215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compare the performance of protective quantum measurements to that of standard projective measurements. Performance is quantified in terms of the uncertainty in the measured expectation value. We derive an expression for the relative performance of these two types of quantum measurements and show explicitly that protective measurements can provide a significant performance advantage over standard projective measurements.\",\"PeriodicalId\":20146,\"journal\":{\"name\":\"Physical Review A\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreva.110.032215\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreva.110.032215","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Performance advantage of protective quantum measurements
We compare the performance of protective quantum measurements to that of standard projective measurements. Performance is quantified in terms of the uncertainty in the measured expectation value. We derive an expression for the relative performance of these two types of quantum measurements and show explicitly that protective measurements can provide a significant performance advantage over standard projective measurements.
期刊介绍:
Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts.
PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including:
-Fundamental concepts
-Quantum information
-Atomic and molecular structure and dynamics; high-precision measurement
-Atomic and molecular collisions and interactions
-Atomic and molecular processes in external fields, including interactions with strong fields and short pulses
-Matter waves and collective properties of cold atoms and molecules
-Quantum optics, physics of lasers, nonlinear optics, and classical optics