G. Bougas, G. C. Katsimiga, P. G. Kevrekidis, S. I. Mistakidis
{"title":"二维液滴环境中非线性激振的稳定性和动态性","authors":"G. Bougas, G. C. Katsimiga, P. G. Kevrekidis, S. I. Mistakidis","doi":"10.1103/physreva.110.033317","DOIUrl":null,"url":null,"abstract":"We unravel stationary states in the form of dark soliton stripes, bubbles, and kinks embedded in a two-dimensional droplet-bearing setting emulated by an extended Gross-Pitaevskii approach. The existence of these configurations is corroborated through an effectively reduced potential picture demonstrating their concrete parametric regions of existence. The excitation spectra of such configurations are analyzed within the Bogoliubov–de Gennes framework exposing the destabilization of dark soliton stripes and bubbles, while confirming the stability of droplets, and importantly unveiling spectral stability of the kink against transverse excitations. Additionally, a variational approach is constructed providing access to the transverse stability analysis of the dark soliton stripe for arbitrary chemical potentials and widths of the structure. This is subsequently compared with the stability analysis outcome demonstrating very good agreement at small wave numbers. Dynamical destabilization of dark soliton stripes via the snake instability is showcased, while bubbles are found to feature both a splitting into a gray soliton pair and a transverse instability thereof. These results shed light on unexplored stability and instability properties of nonlinear excitations in environments featuring a competition of mean-field repulsion and beyond-mean-field attraction that can be probed by state-of-the-art experiments.","PeriodicalId":20146,"journal":{"name":"Physical Review A","volume":"124 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability and dynamics of nonlinear excitations in a two-dimensional droplet-bearing environment\",\"authors\":\"G. Bougas, G. C. Katsimiga, P. G. Kevrekidis, S. I. Mistakidis\",\"doi\":\"10.1103/physreva.110.033317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We unravel stationary states in the form of dark soliton stripes, bubbles, and kinks embedded in a two-dimensional droplet-bearing setting emulated by an extended Gross-Pitaevskii approach. The existence of these configurations is corroborated through an effectively reduced potential picture demonstrating their concrete parametric regions of existence. The excitation spectra of such configurations are analyzed within the Bogoliubov–de Gennes framework exposing the destabilization of dark soliton stripes and bubbles, while confirming the stability of droplets, and importantly unveiling spectral stability of the kink against transverse excitations. Additionally, a variational approach is constructed providing access to the transverse stability analysis of the dark soliton stripe for arbitrary chemical potentials and widths of the structure. This is subsequently compared with the stability analysis outcome demonstrating very good agreement at small wave numbers. Dynamical destabilization of dark soliton stripes via the snake instability is showcased, while bubbles are found to feature both a splitting into a gray soliton pair and a transverse instability thereof. These results shed light on unexplored stability and instability properties of nonlinear excitations in environments featuring a competition of mean-field repulsion and beyond-mean-field attraction that can be probed by state-of-the-art experiments.\",\"PeriodicalId\":20146,\"journal\":{\"name\":\"Physical Review A\",\"volume\":\"124 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreva.110.033317\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreva.110.033317","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Stability and dynamics of nonlinear excitations in a two-dimensional droplet-bearing environment
We unravel stationary states in the form of dark soliton stripes, bubbles, and kinks embedded in a two-dimensional droplet-bearing setting emulated by an extended Gross-Pitaevskii approach. The existence of these configurations is corroborated through an effectively reduced potential picture demonstrating their concrete parametric regions of existence. The excitation spectra of such configurations are analyzed within the Bogoliubov–de Gennes framework exposing the destabilization of dark soliton stripes and bubbles, while confirming the stability of droplets, and importantly unveiling spectral stability of the kink against transverse excitations. Additionally, a variational approach is constructed providing access to the transverse stability analysis of the dark soliton stripe for arbitrary chemical potentials and widths of the structure. This is subsequently compared with the stability analysis outcome demonstrating very good agreement at small wave numbers. Dynamical destabilization of dark soliton stripes via the snake instability is showcased, while bubbles are found to feature both a splitting into a gray soliton pair and a transverse instability thereof. These results shed light on unexplored stability and instability properties of nonlinear excitations in environments featuring a competition of mean-field repulsion and beyond-mean-field attraction that can be probed by state-of-the-art experiments.
期刊介绍:
Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts.
PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including:
-Fundamental concepts
-Quantum information
-Atomic and molecular structure and dynamics; high-precision measurement
-Atomic and molecular collisions and interactions
-Atomic and molecular processes in external fields, including interactions with strong fields and short pulses
-Matter waves and collective properties of cold atoms and molecules
-Quantum optics, physics of lasers, nonlinear optics, and classical optics