{"title":"沉积在不同表面密度的仿生叶脉纹理表面上的 Bi2S3 涂层的特性","authors":"Junyan Wang, Jianxin Deng, Yichen Bao, Kexin Ma, Mingyuan Wang, Runzhou Tian","doi":"10.1002/ls.1722","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In order to investigate the impact of micro-textured surfaces with varying surface density on coating properties, the bionic leaf vein micro-texture with different surface densities were prepared on the substrate surface by laser processing. Bi<sub>2</sub>S<sub>3</sub> soft coatings were deposited on the textured surfaces by electrohydrodynamic atomization. The influence of textured surface density on the adhesion and tribological properties of the coatings was analysed and discussed by scratch tests and friction wear tests. The results showed a significant increase in the friction coefficient as the surface density increased. However, after reaching a certain point, the friction coefficient tended to decrease. The coatings deposited on the lower surface density (13.9%, 14.5%) have better tribological performance compared with the higher surface density (35.6%, 36.2%). Meanwhile, the adhesion of coatings on the textured substrate enhanced compared with coatings deposited on the polished substrate. A reasonable textured surface density can effectively improve the adhesion and tribological properties of the coating.</p>\n </div>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":"37 1","pages":"45-60"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties of Bi2S3 Coatings Deposited on the Bionic Leaf Vein Textured Surfaces With Different Surface Densities\",\"authors\":\"Junyan Wang, Jianxin Deng, Yichen Bao, Kexin Ma, Mingyuan Wang, Runzhou Tian\",\"doi\":\"10.1002/ls.1722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In order to investigate the impact of micro-textured surfaces with varying surface density on coating properties, the bionic leaf vein micro-texture with different surface densities were prepared on the substrate surface by laser processing. Bi<sub>2</sub>S<sub>3</sub> soft coatings were deposited on the textured surfaces by electrohydrodynamic atomization. The influence of textured surface density on the adhesion and tribological properties of the coatings was analysed and discussed by scratch tests and friction wear tests. The results showed a significant increase in the friction coefficient as the surface density increased. However, after reaching a certain point, the friction coefficient tended to decrease. The coatings deposited on the lower surface density (13.9%, 14.5%) have better tribological performance compared with the higher surface density (35.6%, 36.2%). Meanwhile, the adhesion of coatings on the textured substrate enhanced compared with coatings deposited on the polished substrate. A reasonable textured surface density can effectively improve the adhesion and tribological properties of the coating.</p>\\n </div>\",\"PeriodicalId\":18114,\"journal\":{\"name\":\"Lubrication Science\",\"volume\":\"37 1\",\"pages\":\"45-60\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubrication Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ls.1722\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubrication Science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ls.1722","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Properties of Bi2S3 Coatings Deposited on the Bionic Leaf Vein Textured Surfaces With Different Surface Densities
In order to investigate the impact of micro-textured surfaces with varying surface density on coating properties, the bionic leaf vein micro-texture with different surface densities were prepared on the substrate surface by laser processing. Bi2S3 soft coatings were deposited on the textured surfaces by electrohydrodynamic atomization. The influence of textured surface density on the adhesion and tribological properties of the coatings was analysed and discussed by scratch tests and friction wear tests. The results showed a significant increase in the friction coefficient as the surface density increased. However, after reaching a certain point, the friction coefficient tended to decrease. The coatings deposited on the lower surface density (13.9%, 14.5%) have better tribological performance compared with the higher surface density (35.6%, 36.2%). Meanwhile, the adhesion of coatings on the textured substrate enhanced compared with coatings deposited on the polished substrate. A reasonable textured surface density can effectively improve the adhesion and tribological properties of the coating.
期刊介绍:
Lubrication Science is devoted to high-quality research which notably advances fundamental and applied aspects of the science and technology related to lubrication. It publishes research articles, short communications and reviews which demonstrate novelty and cutting edge science in the field, aiming to become a key specialised venue for communicating advances in lubrication research and development.
Lubrication is a diverse discipline ranging from lubrication concepts in industrial and automotive engineering, solid-state and gas lubrication, micro & nanolubrication phenomena, to lubrication in biological systems. To investigate these areas the scope of the journal encourages fundamental and application-based studies on:
Synthesis, chemistry and the broader development of high-performing and environmentally adapted lubricants and additives.
State of the art analytical tools and characterisation of lubricants, lubricated surfaces and interfaces.
Solid lubricants, self-lubricating coatings and composites, lubricating nanoparticles.
Gas lubrication.
Extreme-conditions lubrication.
Green-lubrication technology and lubricants.
Tribochemistry and tribocorrosion of environment- and lubricant-interface interactions.
Modelling of lubrication mechanisms and interface phenomena on different scales: from atomic and molecular to mezzo and structural.
Modelling hydrodynamic and thin film lubrication.
All lubrication related aspects of nanotribology.
Surface-lubricant interface interactions and phenomena: wetting, adhesion and adsorption.
Bio-lubrication, bio-lubricants and lubricated biological systems.
Other novel and cutting-edge aspects of lubrication in all lubrication regimes.