{"title":"开发基于 PCL/沸石支撑银纳米颗粒的纳米复合材料,用于活性食品包装","authors":"Fayçal Benhacine, Feriel Meriem Lounis, Assia Sihem Hadj-Hamou","doi":"10.1134/S0965545X24600649","DOIUrl":null,"url":null,"abstract":"<p>In recent years, more and more researchers devote attention on the development and application ofbiodegradable, renewable, abundant, environmental-friendly and low-cost active packaging films, with appropriate antioxydante and antimicrobial properties. This paper focuses on developing composite poly (ε-caprolactone) (PCL) membranes reinforced with silver-zeolite nanoparticles (AgZ) prepared by solvent casting method. The resulting structural, thermal and surface properties of the nanocomposite materials were studied by using experimental characterization techniques such as Fourier-transform infrared (FTIR) analysis, UV-visible spectrophotometry, X-Ray diffraction (XRD), contact angle (CA), atomic force microscopy (AFM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The water vapor permeability (WVP) and the mechanical properties have been investigated. Experimental results showed that AgZ nanoparticles were well dispersed into PCL matrix leading to thermally stable nanocomposites with semi-crystalline structure and hydrophilic surfaces. More importantly, the nanocomposite films showed good antibacterial activity against <i>Staphylococcus aureus</i> and <i>Salmonella enteric</i> strains, demonstrating a potential application as an effective and safe packaging material to prolong the shelf life of food products.</p>","PeriodicalId":738,"journal":{"name":"Polymer Science, Series A","volume":"66 2","pages":"240 - 252"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a Nanocomposite Material Based on PCL/Zeolite-Supported Silver Nanoparticles for Active Food Packaging\",\"authors\":\"Fayçal Benhacine, Feriel Meriem Lounis, Assia Sihem Hadj-Hamou\",\"doi\":\"10.1134/S0965545X24600649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, more and more researchers devote attention on the development and application ofbiodegradable, renewable, abundant, environmental-friendly and low-cost active packaging films, with appropriate antioxydante and antimicrobial properties. This paper focuses on developing composite poly (ε-caprolactone) (PCL) membranes reinforced with silver-zeolite nanoparticles (AgZ) prepared by solvent casting method. The resulting structural, thermal and surface properties of the nanocomposite materials were studied by using experimental characterization techniques such as Fourier-transform infrared (FTIR) analysis, UV-visible spectrophotometry, X-Ray diffraction (XRD), contact angle (CA), atomic force microscopy (AFM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The water vapor permeability (WVP) and the mechanical properties have been investigated. Experimental results showed that AgZ nanoparticles were well dispersed into PCL matrix leading to thermally stable nanocomposites with semi-crystalline structure and hydrophilic surfaces. More importantly, the nanocomposite films showed good antibacterial activity against <i>Staphylococcus aureus</i> and <i>Salmonella enteric</i> strains, demonstrating a potential application as an effective and safe packaging material to prolong the shelf life of food products.</p>\",\"PeriodicalId\":738,\"journal\":{\"name\":\"Polymer Science, Series A\",\"volume\":\"66 2\",\"pages\":\"240 - 252\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Science, Series A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0965545X24600649\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Science, Series A","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1134/S0965545X24600649","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Development of a Nanocomposite Material Based on PCL/Zeolite-Supported Silver Nanoparticles for Active Food Packaging
In recent years, more and more researchers devote attention on the development and application ofbiodegradable, renewable, abundant, environmental-friendly and low-cost active packaging films, with appropriate antioxydante and antimicrobial properties. This paper focuses on developing composite poly (ε-caprolactone) (PCL) membranes reinforced with silver-zeolite nanoparticles (AgZ) prepared by solvent casting method. The resulting structural, thermal and surface properties of the nanocomposite materials were studied by using experimental characterization techniques such as Fourier-transform infrared (FTIR) analysis, UV-visible spectrophotometry, X-Ray diffraction (XRD), contact angle (CA), atomic force microscopy (AFM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The water vapor permeability (WVP) and the mechanical properties have been investigated. Experimental results showed that AgZ nanoparticles were well dispersed into PCL matrix leading to thermally stable nanocomposites with semi-crystalline structure and hydrophilic surfaces. More importantly, the nanocomposite films showed good antibacterial activity against Staphylococcus aureus and Salmonella enteric strains, demonstrating a potential application as an effective and safe packaging material to prolong the shelf life of food products.
期刊介绍:
Polymer Science, Series A is a journal published in collaboration with the Russian Academy of Sciences. Series A includes experimental and theoretical papers and reviews devoted to physicochemical studies of the structure and properties of polymers (6 issues a year). All journal series present original papers and reviews covering all fundamental aspects of macromolecular science. Contributions should be of marked novelty and interest for a broad readership. Articles may be written in English or Russian regardless of country and nationality of authors. All manuscripts are peer reviewed. Online submission via Internet to the Series A, B, and C is available at http://polymsci.ru.