Lei Wang, Xiaosong Ma, Yi Liu, Guolan Liu, Haibin Wei, Zhi Luo, Hongyan Liu, Ming Yan, Anning Zhang, Xinqiao Yu, Hui Xia, Lijun Luo
{"title":"不同环境下亲本或母本类基因表达的灵活性有助于节水抗旱杂交水稻避旱和耐旱的结合","authors":"Lei Wang, Xiaosong Ma, Yi Liu, Guolan Liu, Haibin Wei, Zhi Luo, Hongyan Liu, Ming Yan, Anning Zhang, Xinqiao Yu, Hui Xia, Lijun Luo","doi":"10.1007/s00122-024-04735-5","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Key Message</h3><p>The hybrid rice variety (Hanyou73) exhibits the maternal-like (HH7A) gene expression in roots and parental-like (HH3) gene expression in leaves to obtain both advantages of drought avoidance and drought tolerance from its two parents.</p><h3 data-test=\"abstract-sub-heading\">Background</h3><p>Rice is one of the most important crops in the world. Rice production consumes lots of water and significantly suffers from the water deficiency and drought stress. The water-saving and drought-resistance rice (WDR) confers good drought resistance and performs well in the water-saving cultivation.</p><h3 data-test=\"abstract-sub-heading\">Main findings</h3><p>A hybrid WDR variety Hanyou73 (HY73) exhibited superior drought resistance compared with its parents Hanhui3 (HH3) and Huhan7A (HH7A). Studies on drought resistance related traits revealed that HY73 performed like HH3 and HH7A on drought tolerance and drought avoidance, respectively. Transcriptomes were analyzed for samples with various phytohormone treatments and abiotic stresses, in which HY73 was closer to HH3 in leaf samples while HH7A in root samples. HY73 and its parents differed largely in DEGs and GO analysis for DEGs suggested the different pathways of drought response in HH3 and HH7A. Parent-like expression analysis revealed that the higher-parent-like expression pattern was prevailing in HY73. In addition, patterns of the parent-like expression significantly transformed between abiotic-stressed/phytohormone-treated and control samples, which might help HY73 to adapt to different environments. WGCNA analysis for those parent-like expression genes revealed some drought resistant genes that should contribute to the superior drought resistance of HY73. Genetic variation on the promotor sequence was confirmed as the reason for the flexible parent-like gene expression in HY73.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Our study uncovered the important roles of complementation of beneficial traits from parents and flexible gene expressions in drought resistance of HY73, which could facilitate the development of new WDR varieties.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexibility of parental-like or maternal-like gene expression under diverse environments contributes to combined drought avoidance and drought tolerance in a water-saving and drought-resistance rice hybrid\",\"authors\":\"Lei Wang, Xiaosong Ma, Yi Liu, Guolan Liu, Haibin Wei, Zhi Luo, Hongyan Liu, Ming Yan, Anning Zhang, Xinqiao Yu, Hui Xia, Lijun Luo\",\"doi\":\"10.1007/s00122-024-04735-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Key Message</h3><p>The hybrid rice variety (Hanyou73) exhibits the maternal-like (HH7A) gene expression in roots and parental-like (HH3) gene expression in leaves to obtain both advantages of drought avoidance and drought tolerance from its two parents.</p><h3 data-test=\\\"abstract-sub-heading\\\">Background</h3><p>Rice is one of the most important crops in the world. Rice production consumes lots of water and significantly suffers from the water deficiency and drought stress. The water-saving and drought-resistance rice (WDR) confers good drought resistance and performs well in the water-saving cultivation.</p><h3 data-test=\\\"abstract-sub-heading\\\">Main findings</h3><p>A hybrid WDR variety Hanyou73 (HY73) exhibited superior drought resistance compared with its parents Hanhui3 (HH3) and Huhan7A (HH7A). Studies on drought resistance related traits revealed that HY73 performed like HH3 and HH7A on drought tolerance and drought avoidance, respectively. Transcriptomes were analyzed for samples with various phytohormone treatments and abiotic stresses, in which HY73 was closer to HH3 in leaf samples while HH7A in root samples. HY73 and its parents differed largely in DEGs and GO analysis for DEGs suggested the different pathways of drought response in HH3 and HH7A. Parent-like expression analysis revealed that the higher-parent-like expression pattern was prevailing in HY73. In addition, patterns of the parent-like expression significantly transformed between abiotic-stressed/phytohormone-treated and control samples, which might help HY73 to adapt to different environments. WGCNA analysis for those parent-like expression genes revealed some drought resistant genes that should contribute to the superior drought resistance of HY73. Genetic variation on the promotor sequence was confirmed as the reason for the flexible parent-like gene expression in HY73.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusion</h3><p>Our study uncovered the important roles of complementation of beneficial traits from parents and flexible gene expressions in drought resistance of HY73, which could facilitate the development of new WDR varieties.</p>\",\"PeriodicalId\":22955,\"journal\":{\"name\":\"Theoretical and Applied Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Genetics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s00122-024-04735-5\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-024-04735-5","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Flexibility of parental-like or maternal-like gene expression under diverse environments contributes to combined drought avoidance and drought tolerance in a water-saving and drought-resistance rice hybrid
Key Message
The hybrid rice variety (Hanyou73) exhibits the maternal-like (HH7A) gene expression in roots and parental-like (HH3) gene expression in leaves to obtain both advantages of drought avoidance and drought tolerance from its two parents.
Background
Rice is one of the most important crops in the world. Rice production consumes lots of water and significantly suffers from the water deficiency and drought stress. The water-saving and drought-resistance rice (WDR) confers good drought resistance and performs well in the water-saving cultivation.
Main findings
A hybrid WDR variety Hanyou73 (HY73) exhibited superior drought resistance compared with its parents Hanhui3 (HH3) and Huhan7A (HH7A). Studies on drought resistance related traits revealed that HY73 performed like HH3 and HH7A on drought tolerance and drought avoidance, respectively. Transcriptomes were analyzed for samples with various phytohormone treatments and abiotic stresses, in which HY73 was closer to HH3 in leaf samples while HH7A in root samples. HY73 and its parents differed largely in DEGs and GO analysis for DEGs suggested the different pathways of drought response in HH3 and HH7A. Parent-like expression analysis revealed that the higher-parent-like expression pattern was prevailing in HY73. In addition, patterns of the parent-like expression significantly transformed between abiotic-stressed/phytohormone-treated and control samples, which might help HY73 to adapt to different environments. WGCNA analysis for those parent-like expression genes revealed some drought resistant genes that should contribute to the superior drought resistance of HY73. Genetic variation on the promotor sequence was confirmed as the reason for the flexible parent-like gene expression in HY73.
Conclusion
Our study uncovered the important roles of complementation of beneficial traits from parents and flexible gene expressions in drought resistance of HY73, which could facilitate the development of new WDR varieties.
期刊介绍:
Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.