{"title":"利用乙基纤维素/百里酚共晶体系创新性地绿色合成疏水共价网络","authors":"Ren'ai Li, Chen Su, Mengqing Li and Yunfeng Cao","doi":"10.1039/D4GC03539A","DOIUrl":null,"url":null,"abstract":"<p >Cellulose and its derivatives have shown significant potential as plastic replacement materials due to their outstanding properties. However, current research still faces challenges related to green synthesis, structural design, and multifunctionality. To address these issues, an innovative green eutectic solvent (ES) based on ethylcellulose (EC) and thymol (Thy) is proposed for the preparation of high-performance cellulose-based hydrophobic covalently crosslinked networks. EC and Thy can be prepared as a molecular solvent system in one step without the need for external solvents. Subsequently, co-monomers and chemically stable lithium salts are introduced into the homogeneous EC/Thy ES medium, resulting in the formation of highly transparent, mechanically tough, and ionically conductive cellulosic polymer films (CPFs) through <em>in situ</em> photopolymerization. Furthermore, the prepolymer achieves a precise replication of the complex microstructure of the natural rose surface with the help of stearic acid, imparting superhydrophobicity to the CPF. The prepared superhydrophobic CPF exhibits excellent self-cleaning ability, pressure responsiveness, and stable sensing performance under different humidity environments. The biomass-based eutectic strategy demonstrated in this paper presents a green and efficient method for preparing multifunctional cellulose-based materials with a wide range of applications.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative green synthesis of hydrophobic covalent networks using ethyl cellulose/thymol eutectic systems†\",\"authors\":\"Ren'ai Li, Chen Su, Mengqing Li and Yunfeng Cao\",\"doi\":\"10.1039/D4GC03539A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Cellulose and its derivatives have shown significant potential as plastic replacement materials due to their outstanding properties. However, current research still faces challenges related to green synthesis, structural design, and multifunctionality. To address these issues, an innovative green eutectic solvent (ES) based on ethylcellulose (EC) and thymol (Thy) is proposed for the preparation of high-performance cellulose-based hydrophobic covalently crosslinked networks. EC and Thy can be prepared as a molecular solvent system in one step without the need for external solvents. Subsequently, co-monomers and chemically stable lithium salts are introduced into the homogeneous EC/Thy ES medium, resulting in the formation of highly transparent, mechanically tough, and ionically conductive cellulosic polymer films (CPFs) through <em>in situ</em> photopolymerization. Furthermore, the prepolymer achieves a precise replication of the complex microstructure of the natural rose surface with the help of stearic acid, imparting superhydrophobicity to the CPF. The prepared superhydrophobic CPF exhibits excellent self-cleaning ability, pressure responsiveness, and stable sensing performance under different humidity environments. The biomass-based eutectic strategy demonstrated in this paper presents a green and efficient method for preparing multifunctional cellulose-based materials with a wide range of applications.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/gc/d4gc03539a\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/gc/d4gc03539a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Innovative green synthesis of hydrophobic covalent networks using ethyl cellulose/thymol eutectic systems†
Cellulose and its derivatives have shown significant potential as plastic replacement materials due to their outstanding properties. However, current research still faces challenges related to green synthesis, structural design, and multifunctionality. To address these issues, an innovative green eutectic solvent (ES) based on ethylcellulose (EC) and thymol (Thy) is proposed for the preparation of high-performance cellulose-based hydrophobic covalently crosslinked networks. EC and Thy can be prepared as a molecular solvent system in one step without the need for external solvents. Subsequently, co-monomers and chemically stable lithium salts are introduced into the homogeneous EC/Thy ES medium, resulting in the formation of highly transparent, mechanically tough, and ionically conductive cellulosic polymer films (CPFs) through in situ photopolymerization. Furthermore, the prepolymer achieves a precise replication of the complex microstructure of the natural rose surface with the help of stearic acid, imparting superhydrophobicity to the CPF. The prepared superhydrophobic CPF exhibits excellent self-cleaning ability, pressure responsiveness, and stable sensing performance under different humidity environments. The biomass-based eutectic strategy demonstrated in this paper presents a green and efficient method for preparing multifunctional cellulose-based materials with a wide range of applications.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.