随机基因调控网络的优化和模型预测控制计算框架

Hamza Faquir, Manuel Pájaro, Irene Otero-Muras
{"title":"随机基因调控网络的优化和模型预测控制计算框架","authors":"Hamza Faquir, Manuel Pájaro, Irene Otero-Muras","doi":"arxiv-2409.11036","DOIUrl":null,"url":null,"abstract":"Engineering biology requires precise control of biomolecular circuits, and\nCybergenetics is the field dedicated to achieving this goal. A significant\nchallenge in developing controllers for cellular functions is designing systems\nthat can effectively manage molecular noise. To address this, there has been\nincreasing effort to develop model-based controllers for stochastic\nbiomolecular systems, where a major difficulty lies in accurately solving the\nchemical master equation. In this work we develop a framework for optimal and\nModel Predictive Control of stochastic gene regulatory networks with three key\nadvantageous features: high computational efficiency, the capacity to control\nthe overall probability density function enabling the fine-tuning of the cell\npopulation to obtain complex shapes and behaviors (including bimodality and\nother emergent properties), and the capacity to handle high levels of intrinsic\nmolecular noise. Our method exploits an efficient approximation of the Chemical\nMaster Equation using Partial Integro-Differential Equations, which\nadditionally enables the development of an effective adjoint-based\noptimization. We illustrate the performance of the methods presented through\ntwo relevant studies in Synthetic Biology: shaping bimodal cell populations and\ntracking moving target distributions via inducible gene regulatory circuits.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":"105 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A computational framework for optimal and Model Predictive Control of stochastic gene regulatory networks\",\"authors\":\"Hamza Faquir, Manuel Pájaro, Irene Otero-Muras\",\"doi\":\"arxiv-2409.11036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Engineering biology requires precise control of biomolecular circuits, and\\nCybergenetics is the field dedicated to achieving this goal. A significant\\nchallenge in developing controllers for cellular functions is designing systems\\nthat can effectively manage molecular noise. To address this, there has been\\nincreasing effort to develop model-based controllers for stochastic\\nbiomolecular systems, where a major difficulty lies in accurately solving the\\nchemical master equation. In this work we develop a framework for optimal and\\nModel Predictive Control of stochastic gene regulatory networks with three key\\nadvantageous features: high computational efficiency, the capacity to control\\nthe overall probability density function enabling the fine-tuning of the cell\\npopulation to obtain complex shapes and behaviors (including bimodality and\\nother emergent properties), and the capacity to handle high levels of intrinsic\\nmolecular noise. Our method exploits an efficient approximation of the Chemical\\nMaster Equation using Partial Integro-Differential Equations, which\\nadditionally enables the development of an effective adjoint-based\\noptimization. We illustrate the performance of the methods presented through\\ntwo relevant studies in Synthetic Biology: shaping bimodal cell populations and\\ntracking moving target distributions via inducible gene regulatory circuits.\",\"PeriodicalId\":501266,\"journal\":{\"name\":\"arXiv - QuanBio - Quantitative Methods\",\"volume\":\"105 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Quantitative Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

工程生物学要求对生物分子电路进行精确控制,而网络遗传学正是致力于实现这一目标的领域。开发细胞功能控制器的一个重大挑战是设计能有效管理分子噪声的系统。为了解决这个问题,人们越来越努力地为随机生物分子系统开发基于模型的控制器,其中的主要困难在于如何准确求解化学主方程。在这项工作中,我们为随机基因调控网络的优化和模型预测控制开发了一个框架,该框架具有三个主要优势特点:计算效率高;能够控制整体概率密度函数,从而对细胞群进行微调,以获得复杂的形状和行为(包括双模性和其他突发特性);能够处理高水平的内在分子噪声。我们的方法利用部分积分微分方程对化学主方程进行了有效的近似,从而开发出一种有效的基于邻接的优化方法。我们通过合成生物学中的两项相关研究说明了所介绍方法的性能:塑造双峰细胞群和通过可诱导基因调控回路跟踪移动目标分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A computational framework for optimal and Model Predictive Control of stochastic gene regulatory networks
Engineering biology requires precise control of biomolecular circuits, and Cybergenetics is the field dedicated to achieving this goal. A significant challenge in developing controllers for cellular functions is designing systems that can effectively manage molecular noise. To address this, there has been increasing effort to develop model-based controllers for stochastic biomolecular systems, where a major difficulty lies in accurately solving the chemical master equation. In this work we develop a framework for optimal and Model Predictive Control of stochastic gene regulatory networks with three key advantageous features: high computational efficiency, the capacity to control the overall probability density function enabling the fine-tuning of the cell population to obtain complex shapes and behaviors (including bimodality and other emergent properties), and the capacity to handle high levels of intrinsic molecular noise. Our method exploits an efficient approximation of the Chemical Master Equation using Partial Integro-Differential Equations, which additionally enables the development of an effective adjoint-based optimization. We illustrate the performance of the methods presented through two relevant studies in Synthetic Biology: shaping bimodal cell populations and tracking moving target distributions via inducible gene regulatory circuits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities Automating proton PBS treatment planning for head and neck cancers using policy gradient-based deep reinforcement learning A computational framework for optimal and Model Predictive Control of stochastic gene regulatory networks Active learning for energy-based antibody optimization and enhanced screening Comorbid anxiety symptoms predict lower odds of improvement in depression symptoms during smartphone-delivered psychotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1