用于研究微生物组的深度学习和语言模型的最新进展

Binghao Yan, Yunbi Nam, Lingyao Li, Rebecca A. Deek, Hongzhe Li, Siyuan Ma
{"title":"用于研究微生物组的深度学习和语言模型的最新进展","authors":"Binghao Yan, Yunbi Nam, Lingyao Li, Rebecca A. Deek, Hongzhe Li, Siyuan Ma","doi":"arxiv-2409.10579","DOIUrl":null,"url":null,"abstract":"Recent advancements in deep learning, particularly large language models\n(LLMs), made a significant impact on how researchers study microbiome and\nmetagenomics data. Microbial protein and genomic sequences, like natural\nlanguages, form a language of life, enabling the adoption of LLMs to extract\nuseful insights from complex microbial ecologies. In this paper, we review\napplications of deep learning and language models in analyzing microbiome and\nmetagenomics data. We focus on problem formulations, necessary datasets, and\nthe integration of language modeling techniques. We provide an extensive\noverview of protein/genomic language modeling and their contributions to\nmicrobiome studies. We also discuss applications such as novel viromics\nlanguage modeling, biosynthetic gene cluster prediction, and knowledge\nintegration for metagenomics studies.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in deep learning and language models for studying the microbiome\",\"authors\":\"Binghao Yan, Yunbi Nam, Lingyao Li, Rebecca A. Deek, Hongzhe Li, Siyuan Ma\",\"doi\":\"arxiv-2409.10579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advancements in deep learning, particularly large language models\\n(LLMs), made a significant impact on how researchers study microbiome and\\nmetagenomics data. Microbial protein and genomic sequences, like natural\\nlanguages, form a language of life, enabling the adoption of LLMs to extract\\nuseful insights from complex microbial ecologies. In this paper, we review\\napplications of deep learning and language models in analyzing microbiome and\\nmetagenomics data. We focus on problem formulations, necessary datasets, and\\nthe integration of language modeling techniques. We provide an extensive\\noverview of protein/genomic language modeling and their contributions to\\nmicrobiome studies. We also discuss applications such as novel viromics\\nlanguage modeling, biosynthetic gene cluster prediction, and knowledge\\nintegration for metagenomics studies.\",\"PeriodicalId\":501266,\"journal\":{\"name\":\"arXiv - QuanBio - Quantitative Methods\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Quantitative Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度学习,尤其是大型语言模型(LLMs)的最新进展,对研究人员如何研究微生物组和基因组学数据产生了重大影响。微生物蛋白质和基因组序列就像自然语言一样,构成了一种生命语言,因此可以采用 LLMs 从复杂的微生物生态中提取有用的见解。本文回顾了深度学习和语言模型在分析微生物组和基因组学数据中的应用。我们重点讨论了问题的提出、必要的数据集以及语言建模技术的整合。我们广泛介绍了蛋白质/基因组语言建模及其对微生物组研究的贡献。我们还讨论了新型病毒组语言建模、生物合成基因簇预测和元基因组研究知识整合等应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent advances in deep learning and language models for studying the microbiome
Recent advancements in deep learning, particularly large language models (LLMs), made a significant impact on how researchers study microbiome and metagenomics data. Microbial protein and genomic sequences, like natural languages, form a language of life, enabling the adoption of LLMs to extract useful insights from complex microbial ecologies. In this paper, we review applications of deep learning and language models in analyzing microbiome and metagenomics data. We focus on problem formulations, necessary datasets, and the integration of language modeling techniques. We provide an extensive overview of protein/genomic language modeling and their contributions to microbiome studies. We also discuss applications such as novel viromics language modeling, biosynthetic gene cluster prediction, and knowledge integration for metagenomics studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities Automating proton PBS treatment planning for head and neck cancers using policy gradient-based deep reinforcement learning A computational framework for optimal and Model Predictive Control of stochastic gene regulatory networks Active learning for energy-based antibody optimization and enhanced screening Comorbid anxiety symptoms predict lower odds of improvement in depression symptoms during smartphone-delivered psychotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1