基于能量的抗体优化和增强筛选的主动学习

Kairi Furui, Masahito Ohue
{"title":"基于能量的抗体优化和增强筛选的主动学习","authors":"Kairi Furui, Masahito Ohue","doi":"arxiv-2409.10964","DOIUrl":null,"url":null,"abstract":"Accurate prediction and optimization of protein-protein binding affinity is\ncrucial for therapeutic antibody development. Although machine learning-based\nprediction methods $\\Delta\\Delta G$ are suitable for large-scale mutant\nscreening, they struggle to predict the effects of multiple mutations for\ntargets without existing binders. Energy function-based methods, though more\naccurate, are time consuming and not ideal for large-scale screening. To\naddress this, we propose an active learning workflow that efficiently trains a\ndeep learning model to learn energy functions for specific targets, combining\nthe advantages of both approaches. Our method integrates the RDE-Network deep\nlearning model with Rosetta's energy function-based Flex ddG to efficiently\nexplore mutants that bind to Flex ddG. In a case study targeting HER2-binding\nTrastuzumab mutants, our approach significantly improved the screening\nperformance over random selection and demonstrated the ability to identify\nmutants with better binding properties without experimental $\\Delta\\Delta G$\ndata. This workflow advances computational antibody design by combining machine\nlearning, physics-based computations, and active learning to achieve more\nefficient antibody development.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active learning for energy-based antibody optimization and enhanced screening\",\"authors\":\"Kairi Furui, Masahito Ohue\",\"doi\":\"arxiv-2409.10964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate prediction and optimization of protein-protein binding affinity is\\ncrucial for therapeutic antibody development. Although machine learning-based\\nprediction methods $\\\\Delta\\\\Delta G$ are suitable for large-scale mutant\\nscreening, they struggle to predict the effects of multiple mutations for\\ntargets without existing binders. Energy function-based methods, though more\\naccurate, are time consuming and not ideal for large-scale screening. To\\naddress this, we propose an active learning workflow that efficiently trains a\\ndeep learning model to learn energy functions for specific targets, combining\\nthe advantages of both approaches. Our method integrates the RDE-Network deep\\nlearning model with Rosetta's energy function-based Flex ddG to efficiently\\nexplore mutants that bind to Flex ddG. In a case study targeting HER2-binding\\nTrastuzumab mutants, our approach significantly improved the screening\\nperformance over random selection and demonstrated the ability to identify\\nmutants with better binding properties without experimental $\\\\Delta\\\\Delta G$\\ndata. This workflow advances computational antibody design by combining machine\\nlearning, physics-based computations, and active learning to achieve more\\nefficient antibody development.\",\"PeriodicalId\":501266,\"journal\":{\"name\":\"arXiv - QuanBio - Quantitative Methods\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Quantitative Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确预测和优化蛋白质与蛋白质之间的结合亲和力对于治疗性抗体的开发至关重要。虽然基于机器学习的预测方法适用于大规模突变筛选,但它们很难预测多种突变对没有现有结合体的靶点的影响。基于能量函数的方法虽然更准确,但耗时长,并不适合大规模筛选。为了解决这个问题,我们提出了一种主动学习工作流程,它能有效地训练深度学习模型来学习特定靶标的能量函数,同时结合了这两种方法的优点。我们的方法将 RDE-Network 深度学习模型与 Rosetta 基于能量函数的 Flex ddG 整合在一起,高效地探索与 Flex ddG 结合的突变体。在一项针对与 HER2 结合的曲妥珠单抗突变体的案例研究中,与随机选择相比,我们的方法显著提高了筛选性能,并证明了在没有实验数据的情况下识别出具有更好结合特性的突变体的能力。该工作流程将机器学习、物理计算和主动学习相结合,实现了更高效的抗体开发,从而推动了计算抗体设计的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Active learning for energy-based antibody optimization and enhanced screening
Accurate prediction and optimization of protein-protein binding affinity is crucial for therapeutic antibody development. Although machine learning-based prediction methods $\Delta\Delta G$ are suitable for large-scale mutant screening, they struggle to predict the effects of multiple mutations for targets without existing binders. Energy function-based methods, though more accurate, are time consuming and not ideal for large-scale screening. To address this, we propose an active learning workflow that efficiently trains a deep learning model to learn energy functions for specific targets, combining the advantages of both approaches. Our method integrates the RDE-Network deep learning model with Rosetta's energy function-based Flex ddG to efficiently explore mutants that bind to Flex ddG. In a case study targeting HER2-binding Trastuzumab mutants, our approach significantly improved the screening performance over random selection and demonstrated the ability to identify mutants with better binding properties without experimental $\Delta\Delta G$ data. This workflow advances computational antibody design by combining machine learning, physics-based computations, and active learning to achieve more efficient antibody development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities Automating proton PBS treatment planning for head and neck cancers using policy gradient-based deep reinforcement learning A computational framework for optimal and Model Predictive Control of stochastic gene regulatory networks Active learning for energy-based antibody optimization and enhanced screening Comorbid anxiety symptoms predict lower odds of improvement in depression symptoms during smartphone-delivered psychotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1