借助深度聚类算法有效建立菊花种苗质量分类标准

Yanzhi Jing, Hongguang Zhao, Shujun Yu
{"title":"借助深度聚类算法有效建立菊花种苗质量分类标准","authors":"Yanzhi Jing, Hongguang Zhao, Shujun Yu","doi":"arxiv-2409.08867","DOIUrl":null,"url":null,"abstract":"Establishing reasonable standards for edible chrysanthemum seedlings helps\npromote seedling development, thereby improving plant quality. However, current\ngrading methods have the several issues. The limitation that only support a few\nindicators causes information loss, and indicators selected to evaluate\nseedling level have a narrow applicability. Meanwhile, some methods misuse\nmathematical formulas. Therefore, we propose a simple, efficient, and generic\nframework, SQCSEF, for establishing seedling quality classification standards\nwith flexible clustering modules, applicable to most plant species. In this\nstudy, we introduce the state-of-the-art deep clustering algorithm CVCL, using\nfactor analysis to divide indicators into several perspectives as inputs for\nthe CVCL method, resulting in more reasonable clusters and ultimately a grading\nstandard $S_{cvcl}$ for edible chrysanthemum seedlings. Through conducting\nextensive experiments, we validate the correctness and efficiency of the\nproposed SQCSEF framework.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establish seedling quality classification standard for Chrysanthemum efficiently with help of deep clustering algorithm\",\"authors\":\"Yanzhi Jing, Hongguang Zhao, Shujun Yu\",\"doi\":\"arxiv-2409.08867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Establishing reasonable standards for edible chrysanthemum seedlings helps\\npromote seedling development, thereby improving plant quality. However, current\\ngrading methods have the several issues. The limitation that only support a few\\nindicators causes information loss, and indicators selected to evaluate\\nseedling level have a narrow applicability. Meanwhile, some methods misuse\\nmathematical formulas. Therefore, we propose a simple, efficient, and generic\\nframework, SQCSEF, for establishing seedling quality classification standards\\nwith flexible clustering modules, applicable to most plant species. In this\\nstudy, we introduce the state-of-the-art deep clustering algorithm CVCL, using\\nfactor analysis to divide indicators into several perspectives as inputs for\\nthe CVCL method, resulting in more reasonable clusters and ultimately a grading\\nstandard $S_{cvcl}$ for edible chrysanthemum seedlings. Through conducting\\nextensive experiments, we validate the correctness and efficiency of the\\nproposed SQCSEF framework.\",\"PeriodicalId\":501266,\"journal\":{\"name\":\"arXiv - QuanBio - Quantitative Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Quantitative Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

制定合理的食用菊花种苗标准有助于促进种苗发育,从而提高植物质量。然而,目前的分级方法存在几个问题。仅支持少数几个指标的局限性造成了信息的缺失,所选择的评价秧苗水平的指标适用性较窄。同时,有些方法滥用数学公式。因此,我们提出了一个简单、高效、通用的框架 SQCSEF,用于建立苗木质量分类标准,具有灵活的聚类模块,适用于大多数植物物种。在本研究中,我们引入了最先进的深度聚类算法 CVCL,利用因子分析法将指标分为几个角度作为 CVCL 方法的输入,从而得到更合理的聚类,并最终得到食用菊花种苗的分级标准 $S_{cvcl}$。通过大量实验,我们验证了所提出的 SQCSEF 框架的正确性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Establish seedling quality classification standard for Chrysanthemum efficiently with help of deep clustering algorithm
Establishing reasonable standards for edible chrysanthemum seedlings helps promote seedling development, thereby improving plant quality. However, current grading methods have the several issues. The limitation that only support a few indicators causes information loss, and indicators selected to evaluate seedling level have a narrow applicability. Meanwhile, some methods misuse mathematical formulas. Therefore, we propose a simple, efficient, and generic framework, SQCSEF, for establishing seedling quality classification standards with flexible clustering modules, applicable to most plant species. In this study, we introduce the state-of-the-art deep clustering algorithm CVCL, using factor analysis to divide indicators into several perspectives as inputs for the CVCL method, resulting in more reasonable clusters and ultimately a grading standard $S_{cvcl}$ for edible chrysanthemum seedlings. Through conducting extensive experiments, we validate the correctness and efficiency of the proposed SQCSEF framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities Automating proton PBS treatment planning for head and neck cancers using policy gradient-based deep reinforcement learning A computational framework for optimal and Model Predictive Control of stochastic gene regulatory networks Active learning for energy-based antibody optimization and enhanced screening Comorbid anxiety symptoms predict lower odds of improvement in depression symptoms during smartphone-delivered psychotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1