不确定水下环境中蛇形机器人的三维动力学与控制

IF 1.9 4区 计算机科学 Q3 ROBOTICS Robotica Pub Date : 2024-09-19 DOI:10.1017/s0263574724000821
Bhavik M. Patel, Santosha K. Dwivedy
{"title":"不确定水下环境中蛇形机器人的三维动力学与控制","authors":"Bhavik M. Patel, Santosha K. Dwivedy","doi":"10.1017/s0263574724000821","DOIUrl":null,"url":null,"abstract":"<p>The snake robot can be used to monitor and maintain underwater structures and environments. The motion of a snake robot is achieved by lateral undulation which is called the gait pattern of the snake robot. The parameters of a gait pattern need to be adjusted for compensating environmental uncertainties. In this work, 3D motion dynamics of a snake robot for the underwater environment is proposed with vertical motion using the buoyancy variation technique and horizontal motion using lateral undulation. “The neutral buoyant snake robot motion in hypothetical plane and added mass effect is negligible”, these previous assumptions are removed in this work. Two different control algorithms are designed for horizontal and vertical motions. The existing super twisting sliding mode control (STSMC) is used for the horizontal serpentine motion of the snake robot. The control law is designed on a reduced-ordered dynamic system based on virtual holonomic constraints. The vertical motion is achieved by controlling the mass variation using a pump. The water pumps are controlled using the event-based controller or Proportional Derivative (PD) controller. The results of the proposed control technique are verified with various external environmental disturbances and uncertainties to check the robustness of the control approach for various path following cases. Moreover, the results of STSMC scheme are compared with SMC scheme to check the effectiveness of STSMC. The practical implementation of the work is also performed using Simscape Multibody environment where the designed control algorithm is deployed on the virtual snake robot.</p>","PeriodicalId":49593,"journal":{"name":"Robotica","volume":"44 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D dynamics and control of a snake robot in uncertain underwater environment\",\"authors\":\"Bhavik M. Patel, Santosha K. Dwivedy\",\"doi\":\"10.1017/s0263574724000821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The snake robot can be used to monitor and maintain underwater structures and environments. The motion of a snake robot is achieved by lateral undulation which is called the gait pattern of the snake robot. The parameters of a gait pattern need to be adjusted for compensating environmental uncertainties. In this work, 3D motion dynamics of a snake robot for the underwater environment is proposed with vertical motion using the buoyancy variation technique and horizontal motion using lateral undulation. “The neutral buoyant snake robot motion in hypothetical plane and added mass effect is negligible”, these previous assumptions are removed in this work. Two different control algorithms are designed for horizontal and vertical motions. The existing super twisting sliding mode control (STSMC) is used for the horizontal serpentine motion of the snake robot. The control law is designed on a reduced-ordered dynamic system based on virtual holonomic constraints. The vertical motion is achieved by controlling the mass variation using a pump. The water pumps are controlled using the event-based controller or Proportional Derivative (PD) controller. The results of the proposed control technique are verified with various external environmental disturbances and uncertainties to check the robustness of the control approach for various path following cases. Moreover, the results of STSMC scheme are compared with SMC scheme to check the effectiveness of STSMC. The practical implementation of the work is also performed using Simscape Multibody environment where the designed control algorithm is deployed on the virtual snake robot.</p>\",\"PeriodicalId\":49593,\"journal\":{\"name\":\"Robotica\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s0263574724000821\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0263574724000821","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

蛇形机器人可用于监测和维护水下结构和环境。蛇形机器人通过横向起伏实现运动,这就是蛇形机器人的步态。步态模式的参数需要调整,以补偿环境的不确定性。在这项工作中,提出了水下环境蛇形机器人的三维运动动力学,其中垂直运动采用浮力变化技术,水平运动采用横向起伏技术。由于 "蛇形机器人在假设平面内的中性浮力运动和附加质量效应可以忽略不计",因此本作品取消了这些先前的假设。针对水平和垂直运动设计了两种不同的控制算法。蛇形机器人的水平蛇形运动采用现有的超扭曲滑动模式控制(STSMC)。该控制法则是在基于虚拟整体约束的减序动态系统上设计的。垂直运动是通过使用水泵控制质量变化来实现的。水泵使用基于事件的控制器或比例微分(PD)控制器进行控制。在各种外部环境干扰和不确定性的情况下,对所提出的控制技术的结果进行了验证,以检查控制方法在各种路径跟踪情况下的鲁棒性。此外,还将 STSMC 方案的结果与 SMC 方案进行了比较,以检验 STSMC 的有效性。工作的实际实施也是在 Simscape 多体环境下进行的,在虚拟蛇形机器人上部署了设计的控制算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D dynamics and control of a snake robot in uncertain underwater environment

The snake robot can be used to monitor and maintain underwater structures and environments. The motion of a snake robot is achieved by lateral undulation which is called the gait pattern of the snake robot. The parameters of a gait pattern need to be adjusted for compensating environmental uncertainties. In this work, 3D motion dynamics of a snake robot for the underwater environment is proposed with vertical motion using the buoyancy variation technique and horizontal motion using lateral undulation. “The neutral buoyant snake robot motion in hypothetical plane and added mass effect is negligible”, these previous assumptions are removed in this work. Two different control algorithms are designed for horizontal and vertical motions. The existing super twisting sliding mode control (STSMC) is used for the horizontal serpentine motion of the snake robot. The control law is designed on a reduced-ordered dynamic system based on virtual holonomic constraints. The vertical motion is achieved by controlling the mass variation using a pump. The water pumps are controlled using the event-based controller or Proportional Derivative (PD) controller. The results of the proposed control technique are verified with various external environmental disturbances and uncertainties to check the robustness of the control approach for various path following cases. Moreover, the results of STSMC scheme are compared with SMC scheme to check the effectiveness of STSMC. The practical implementation of the work is also performed using Simscape Multibody environment where the designed control algorithm is deployed on the virtual snake robot.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Robotica
Robotica 工程技术-机器人学
CiteScore
4.50
自引率
22.20%
发文量
181
审稿时长
9.9 months
期刊介绍: Robotica is a forum for the multidisciplinary subject of robotics and encourages developments, applications and research in this important field of automation and robotics with regard to industry, health, education and economic and social aspects of relevance. Coverage includes activities in hostile environments, applications in the service and manufacturing industries, biological robotics, dynamics and kinematics involved in robot design and uses, on-line robots, robot task planning, rehabilitation robotics, sensory perception, software in the widest sense, particularly in respect of programming languages and links with CAD/CAM systems, telerobotics and various other areas. In addition, interest is focused on various Artificial Intelligence topics of theoretical and practical interest.
期刊最新文献
3D dynamics and control of a snake robot in uncertain underwater environment An application of natural matrices to the dynamic balance problem of planar parallel manipulators Control of stance-leg motion and zero-moment point for achieving perfect upright stationary state of rimless wheel type walker with parallel linkage legs Trajectory tracking control of a mobile robot using fuzzy logic controller with optimal parameters High accuracy hybrid kinematic modeling for serial robotic manipulators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1