Acela López-Benítez, Alfredo Guevara-Lara, Miguel A. Domínguez-Crespo, José A. Andraca-Adame, Aidé M. Torres-Huerta
{"title":"全球河流中有机氯、有机磷和拟除虫菊酯农药的浓度(2014-2024 年):综述","authors":"Acela López-Benítez, Alfredo Guevara-Lara, Miguel A. Domínguez-Crespo, José A. Andraca-Adame, Aidé M. Torres-Huerta","doi":"10.3390/su16188066","DOIUrl":null,"url":null,"abstract":"The extensive use of pesticides has led to the contamination of natural resources, sometimes causing significant and irreversible damage to the environment and human health. Even though the use of many pesticides is banned, these compounds are still being found in rivers worldwide. In this review, 205 documents have been selected to provide an overview of pesticide contamination in rivers over the last 10 years (2014–2024). After these documents were examined, information of 47 river systems was organized according to the types of pesticides most frequently detected, including organochloride, organophosphorus, and pyrethroid compounds. A total of 156 compounds were classified, showing that 46% of these rivers contain organochlorine compounds, while 40% exhibit organophosphorus pesticides. Aldrin, hexachlorocyclohexane, and endosulfan were the predominant organochlorine pesticides with concentration values between 0.4 and 37 × 105 ng L−1. Chlorpyrifos, malathion, and diazinon were the main organophosphorus pesticides with concentrations between 1 and 11 × 105 ng L−1. Comparing the pesticide concentrations with standard guidelines, we found that the Ganga River in India (90 ng L−1), the Owan and Okura Rivers in Nigeria (210 and 9 × 103 ng L−1), and the Dong Nai River in Vietnam (68 ng L−1) exceed the permissible levels of aldrin (30 ng L−1).","PeriodicalId":22183,"journal":{"name":"Sustainability","volume":"1 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concentrations of Organochlorine, Organophosphorus, and Pyrethroid Pesticides in Rivers Worldwide (2014–2024): A Review\",\"authors\":\"Acela López-Benítez, Alfredo Guevara-Lara, Miguel A. Domínguez-Crespo, José A. Andraca-Adame, Aidé M. Torres-Huerta\",\"doi\":\"10.3390/su16188066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The extensive use of pesticides has led to the contamination of natural resources, sometimes causing significant and irreversible damage to the environment and human health. Even though the use of many pesticides is banned, these compounds are still being found in rivers worldwide. In this review, 205 documents have been selected to provide an overview of pesticide contamination in rivers over the last 10 years (2014–2024). After these documents were examined, information of 47 river systems was organized according to the types of pesticides most frequently detected, including organochloride, organophosphorus, and pyrethroid compounds. A total of 156 compounds were classified, showing that 46% of these rivers contain organochlorine compounds, while 40% exhibit organophosphorus pesticides. Aldrin, hexachlorocyclohexane, and endosulfan were the predominant organochlorine pesticides with concentration values between 0.4 and 37 × 105 ng L−1. Chlorpyrifos, malathion, and diazinon were the main organophosphorus pesticides with concentrations between 1 and 11 × 105 ng L−1. Comparing the pesticide concentrations with standard guidelines, we found that the Ganga River in India (90 ng L−1), the Owan and Okura Rivers in Nigeria (210 and 9 × 103 ng L−1), and the Dong Nai River in Vietnam (68 ng L−1) exceed the permissible levels of aldrin (30 ng L−1).\",\"PeriodicalId\":22183,\"journal\":{\"name\":\"Sustainability\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainability\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/su16188066\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainability","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/su16188066","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Concentrations of Organochlorine, Organophosphorus, and Pyrethroid Pesticides in Rivers Worldwide (2014–2024): A Review
The extensive use of pesticides has led to the contamination of natural resources, sometimes causing significant and irreversible damage to the environment and human health. Even though the use of many pesticides is banned, these compounds are still being found in rivers worldwide. In this review, 205 documents have been selected to provide an overview of pesticide contamination in rivers over the last 10 years (2014–2024). After these documents were examined, information of 47 river systems was organized according to the types of pesticides most frequently detected, including organochloride, organophosphorus, and pyrethroid compounds. A total of 156 compounds were classified, showing that 46% of these rivers contain organochlorine compounds, while 40% exhibit organophosphorus pesticides. Aldrin, hexachlorocyclohexane, and endosulfan were the predominant organochlorine pesticides with concentration values between 0.4 and 37 × 105 ng L−1. Chlorpyrifos, malathion, and diazinon were the main organophosphorus pesticides with concentrations between 1 and 11 × 105 ng L−1. Comparing the pesticide concentrations with standard guidelines, we found that the Ganga River in India (90 ng L−1), the Owan and Okura Rivers in Nigeria (210 and 9 × 103 ng L−1), and the Dong Nai River in Vietnam (68 ng L−1) exceed the permissible levels of aldrin (30 ng L−1).
期刊介绍:
Sustainability (ISSN 2071-1050) is an international and cross-disciplinary scholarly, open access journal of environmental, cultural, economic and social sustainability of human beings, which provides an advanced forum for studies related to sustainability and sustainable development. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research relating to natural sciences, social sciences and humanities in as much detail as possible in order to promote scientific predictions and impact assessments of global change and development. Full experimental and methodical details must be provided so that the results can be reproduced.