基于自适应动态控制障碍函数的 UGV 在非结构化地形中的避障控制

IF 1.9 4区 计算机科学 Q3 ROBOTICS Robotica Pub Date : 2024-09-18 DOI:10.1017/s026357472400122x
Liang Guo, Suyu Zhang, Wenlong Zhao, Jun Liu, Ruijun Liu
{"title":"基于自适应动态控制障碍函数的 UGV 在非结构化地形中的避障控制","authors":"Liang Guo, Suyu Zhang, Wenlong Zhao, Jun Liu, Ruijun Liu","doi":"10.1017/s026357472400122x","DOIUrl":null,"url":null,"abstract":"The widely used model predictive control of discrete-time control barrier functions (MPC-CBF) has difficulties in obstacle avoidance for unmanned ground vehicles (UGVs) in complex terrain. To address this problem, we propose adaptive dynamic control barrier functions (AD-CBF). AD-CBF is able to adaptively select an extended class of functions of CBF to optimize the feasibility and flexibility of obstacle avoidance behaviors based on the relative positions of the UGV and the obstacle, which in turn improves the obstacle avoidance speed and safety of the MPC algorithm when integrated with MPC. The algorithmic constraints of the CBF employ hierarchical density-based spatial clustering of applications with noise (HDBSCAN) for parameterization of dynamic obstacle information and unscaled Kalman filter (UKF) for trajectory prediction. Through simulations and practical experiments, we demonstrate the effectiveness of the AD-CBF-MPC algorithm in planning optimal obstacle avoidance paths in dynamic environments, overcoming the limitations of the point-by-point feasibility of MPC-CBF.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":"26 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Obstacle avoidance control of UGV based on adaptive-dynamic control barrier function in unstructured terrain\",\"authors\":\"Liang Guo, Suyu Zhang, Wenlong Zhao, Jun Liu, Ruijun Liu\",\"doi\":\"10.1017/s026357472400122x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The widely used model predictive control of discrete-time control barrier functions (MPC-CBF) has difficulties in obstacle avoidance for unmanned ground vehicles (UGVs) in complex terrain. To address this problem, we propose adaptive dynamic control barrier functions (AD-CBF). AD-CBF is able to adaptively select an extended class of functions of CBF to optimize the feasibility and flexibility of obstacle avoidance behaviors based on the relative positions of the UGV and the obstacle, which in turn improves the obstacle avoidance speed and safety of the MPC algorithm when integrated with MPC. The algorithmic constraints of the CBF employ hierarchical density-based spatial clustering of applications with noise (HDBSCAN) for parameterization of dynamic obstacle information and unscaled Kalman filter (UKF) for trajectory prediction. Through simulations and practical experiments, we demonstrate the effectiveness of the AD-CBF-MPC algorithm in planning optimal obstacle avoidance paths in dynamic environments, overcoming the limitations of the point-by-point feasibility of MPC-CBF.\",\"PeriodicalId\":49593,\"journal\":{\"name\":\"Robotica\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s026357472400122x\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s026357472400122x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

广泛使用的离散时间控制障碍函数模型预测控制(MPC-CBF)在复杂地形中的无人地面车辆(UGV)避障方面存在困难。为解决这一问题,我们提出了自适应动态控制障碍函数(AD-CBF)。AD-CBF 能够根据 UGV 与障碍物的相对位置,自适应地选择 CBF 的一类扩展函数,优化避障行为的可行性和灵活性,从而提高 MPC 算法与 MPC 集成后的避障速度和安全性。CBF 的算法约束采用基于分层密度的带噪声空间聚类应用(HDBSCAN)对动态障碍物信息进行参数化,并采用无标度卡尔曼滤波器(UKF)进行轨迹预测。通过模拟和实际实验,我们证明了 AD-CBF-MPC 算法在动态环境中规划最优避障路径的有效性,克服了 MPC-CBF 逐点可行性的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Obstacle avoidance control of UGV based on adaptive-dynamic control barrier function in unstructured terrain
The widely used model predictive control of discrete-time control barrier functions (MPC-CBF) has difficulties in obstacle avoidance for unmanned ground vehicles (UGVs) in complex terrain. To address this problem, we propose adaptive dynamic control barrier functions (AD-CBF). AD-CBF is able to adaptively select an extended class of functions of CBF to optimize the feasibility and flexibility of obstacle avoidance behaviors based on the relative positions of the UGV and the obstacle, which in turn improves the obstacle avoidance speed and safety of the MPC algorithm when integrated with MPC. The algorithmic constraints of the CBF employ hierarchical density-based spatial clustering of applications with noise (HDBSCAN) for parameterization of dynamic obstacle information and unscaled Kalman filter (UKF) for trajectory prediction. Through simulations and practical experiments, we demonstrate the effectiveness of the AD-CBF-MPC algorithm in planning optimal obstacle avoidance paths in dynamic environments, overcoming the limitations of the point-by-point feasibility of MPC-CBF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Robotica
Robotica 工程技术-机器人学
CiteScore
4.50
自引率
22.20%
发文量
181
审稿时长
9.9 months
期刊介绍: Robotica is a forum for the multidisciplinary subject of robotics and encourages developments, applications and research in this important field of automation and robotics with regard to industry, health, education and economic and social aspects of relevance. Coverage includes activities in hostile environments, applications in the service and manufacturing industries, biological robotics, dynamics and kinematics involved in robot design and uses, on-line robots, robot task planning, rehabilitation robotics, sensory perception, software in the widest sense, particularly in respect of programming languages and links with CAD/CAM systems, telerobotics and various other areas. In addition, interest is focused on various Artificial Intelligence topics of theoretical and practical interest.
期刊最新文献
3D dynamics and control of a snake robot in uncertain underwater environment An application of natural matrices to the dynamic balance problem of planar parallel manipulators Control of stance-leg motion and zero-moment point for achieving perfect upright stationary state of rimless wheel type walker with parallel linkage legs Trajectory tracking control of a mobile robot using fuzzy logic controller with optimal parameters High accuracy hybrid kinematic modeling for serial robotic manipulators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1